Mapping ash species across a mixed forest using hyperspectral imagery

被引:5
|
作者
Furniss, John [1 ]
Rahimzadeh-Bajgiran, Parinaz [1 ]
Gara, Tawanda W. [1 ]
Daigle, John [1 ]
Costanza, Kara K. L. [2 ]
机构
[1] Univ Maine, Sch Forest Resources, Coll Nat Sci Forestry & Agr, Orono, ME 04469 USA
[2] US Forest Serv, State & Private Forestry, Forest Hlth Protect, USDA, Missoula, MT USA
基金
美国国家航空航天局; 美国食品与农业研究所;
关键词
BORER;
D O I
10.1080/2150704X.2022.2040753
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
North American ash species (Fraxinus spp.) are under dire threat from the invasive pest, emerald ash borer (Agrilus planipennis, EAB), and mapping ash trees is of utmost significance for conservation and prevention efforts. We developed remote sensing techniques to identify ash trees at the individual tree level in a mixed-species forest in Maine, USA, using hyperspectral bands combined with derived spectral vegetation indices (SVIs), texture metrics using Random Forest (RF) and Support Vector Machine (SVM) algorithms. The pixel-based SVM-Optimized model proved to be the most accurate classification method with the lowest number of input variables including six Minimum Noise Fraction (MNF)-reduced bands, four SVIs and two texture variables, achieving 78.2% overall accuracy and 81.0% ash Producer's Accuracy. The technique presented in this study could be used to map ash trees throughout Maine and other states with similar forest types for future preservation efforts.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 50 条
  • [21] Mapping potential habitats of threatened plant species in a moist tall grassland using hyperspectral imagery
    Jun Ishii
    Shan Lu
    Syo Funakoshi
    Yo Shimizu
    Kenji Omasa
    Izumi Washitani
    Biodiversity and Conservation, 2009, 18 : 2521 - 2535
  • [22] Mapping potential habitats of threatened plant species in a moist tall grassland using hyperspectral imagery
    Ishii, Jun
    Lu, Shan
    Funakoshi, Syo
    Shimizu, Yo
    Omasa, Kenji
    Washitani, Izumi
    BIODIVERSITY AND CONSERVATION, 2009, 18 (09) : 2521 - 2535
  • [23] EARLY DETECTING ASH EMERALD ASH BORER (EAB) INFESTATION USING HYPERSPECTRAL IMAGERY
    Zhang, Kongwen
    Hu, Baoxin
    Hanou, Ian
    Jin, Linhai
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6360 - 6363
  • [24] Mapping of forest alliances with simulated multi-seasonal hyperspectral satellite imagery
    Clark, Matthew L.
    Buck-Diaz, Jennifer
    Evens, Julie
    REMOTE SENSING OF ENVIRONMENT, 2018, 210 : 490 - 507
  • [25] MAPPING ASH TREE COLONIZATION IN AN AGRICULTURAL MOUNTAIN LANDSCAPE: INVESTIGATING THE POTENTIAL OF HYPERSPECTRAL IMAGERY
    Sheeren, D.
    Fauvel, M.
    Ladet, S.
    Jacquin, A.
    Bertoni, G.
    Gibon, A.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3672 - 3675
  • [26] Classification of urban tree species using hyperspectral imagery
    Jensen, Ryan R.
    Hardin, Perry J.
    Hardin, Andrew J.
    GEOCARTO INTERNATIONAL, 2012, 27 (05) : 443 - 458
  • [27] A Comparison of Forest Classification using Hyperion and AVIRIS Hyperspectral Imagery
    Cipar, John
    Cooley, Thomas
    Lockwood, Ronald
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1956 - 1959
  • [28] BENTHIC MAPPING USING HIGH RESOLUTION MULTISPECTRAL AND HYPERSPECTRAL IMAGERY
    Marcello, J.
    Eugenio, F.
    Marques, F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1535 - 1538
  • [29] Mapping three invasive weeds using airborne hyperspectral imagery
    Yang, Chenghai
    Everitt, James H.
    ECOLOGICAL INFORMATICS, 2010, 5 (05) : 429 - 439
  • [30] Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and Airborne HySpex Hyperspectral Imagery
    Kluczek, Marcin
    Zagajewski, Bogdan
    Zwijacz-Kozica, Tomasz
    REMOTE SENSING, 2023, 15 (03)