Mapping ash species across a mixed forest using hyperspectral imagery

被引:5
|
作者
Furniss, John [1 ]
Rahimzadeh-Bajgiran, Parinaz [1 ]
Gara, Tawanda W. [1 ]
Daigle, John [1 ]
Costanza, Kara K. L. [2 ]
机构
[1] Univ Maine, Sch Forest Resources, Coll Nat Sci Forestry & Agr, Orono, ME 04469 USA
[2] US Forest Serv, State & Private Forestry, Forest Hlth Protect, USDA, Missoula, MT USA
基金
美国国家航空航天局; 美国食品与农业研究所;
关键词
BORER;
D O I
10.1080/2150704X.2022.2040753
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
North American ash species (Fraxinus spp.) are under dire threat from the invasive pest, emerald ash borer (Agrilus planipennis, EAB), and mapping ash trees is of utmost significance for conservation and prevention efforts. We developed remote sensing techniques to identify ash trees at the individual tree level in a mixed-species forest in Maine, USA, using hyperspectral bands combined with derived spectral vegetation indices (SVIs), texture metrics using Random Forest (RF) and Support Vector Machine (SVM) algorithms. The pixel-based SVM-Optimized model proved to be the most accurate classification method with the lowest number of input variables including six Minimum Noise Fraction (MNF)-reduced bands, four SVIs and two texture variables, achieving 78.2% overall accuracy and 81.0% ash Producer's Accuracy. The technique presented in this study could be used to map ash trees throughout Maine and other states with similar forest types for future preservation efforts.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 50 条
  • [1] Mapping Individual Tree Species in an Urban Forest Using Airborne Lidar Data and Hyperspectral Imagery
    Zhang, Caiyun
    Qiu, Fang
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2012, 78 (10): : 1079 - 1087
  • [2] Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping
    Stavrakoudis, Dimitris G.
    Dragozi, Eleni
    Gitas, Ioannis Z.
    Karydas, Christos G.
    REMOTE SENSING, 2014, 6 (08) : 6897 - 6928
  • [3] Forest species mapping using airborne hyperspectral APEX data
    Tagliabue, Giulia
    Panigada, Cinzia
    Colombo, Roberto
    Fava, Francesco
    Cilia, Chiara
    Baret, Frederic
    Vreys, Kristin
    Meuleman, Koen
    Rossini, Micol
    MISCELLANEA GEOGRAPHICA, 2016, 20 (01): : 28 - 33
  • [4] Mapping urban forest structure and function using hyperspectral imagery and lidar data
    Alonzo, Michael
    McFadden, Joseph P.
    Nowak, David J.
    Roberts, Dar A.
    URBAN FORESTRY & URBAN GREENING, 2016, 17 : 135 - 147
  • [5] Mediterranean forest species mapping using classification of Hyperion imagery
    Galidaki, Georgia
    Gitas, Ioannis
    GEOCARTO INTERNATIONAL, 2015, 30 (01) : 48 - 61
  • [6] MAPPING CAPABILITY OF HYPERSPECTRAL INFORMATION ON DOMINANT ARCTIC VEGETATION SPECIES USING TERRESTRIAL HYPERSPECTRAL IMAGERY
    Yang, Junyoung
    Lee, Yoo Kyung
    Chi, Junhwa
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7586 - 7589
  • [7] Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery
    Pullanagari, R. R.
    Kereszturi, Gabor
    Yule, I. J.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 : 1 - 10
  • [8] Mapping nonnative plants using hyperspectral imagery
    Underwood, E
    Ustin, S
    DiPietro, D
    REMOTE SENSING OF ENVIRONMENT, 2003, 86 (02) : 150 - 161
  • [9] Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China
    Zhao, Yujin
    Zeng, Yuan
    Zheng, Zhaoju
    Dong, Wenxue
    Zhao, Dan
    Wu, Bingfang
    Zhao, Qianjun
    REMOTE SENSING OF ENVIRONMENT, 2018, 213 : 104 - 114
  • [10] A system for processing hyperspectral imagery: application to detecting forest species
    Kozoderov, V. V.
    Kondranin, T. V.
    Dmitriev, E. V.
    Kamentsev, V. P.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (15) : 5926 - 5945