Reducing Dimensionality of Data Using Autoencoders

被引:2
|
作者
Janakiramaiah, B. [1 ]
Kalyani, G. [2 ]
Narayana, S. [3 ]
Krishna, T. Bala Murali [4 ]
机构
[1] PVP Siddhartha Inst Technol, Vijayawada, India
[2] DVR & Dr HS MIC Coll Technol, Vijayawada, India
[3] Gudlavalleru Engn Coll, Gudlavalleru, India
[4] SSIET, Nuzvid, India
关键词
Autoencoders; PCA; Dimensionality reduction;
D O I
10.1007/978-981-32-9690-9_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data dimensionality reduction is a long-standing pre-processing step in machine learning algorithms. Many of the efficient methods are devised to reduce the dimensionality of data very effectively; however, they are incapable of recovering the original data. But the autoencoders are effective not only in reducing the dimensionality but also reconstructing the original data. In this paper, we are attempting to explore the dimensionality reduction capability of autoencoders, and try to comprehend the difference between autoencoder and PCA dimensionality reduction methods. Experiments are conducted on both the methods using MNIST datasets. The results show that the autoencoder can indeed learn somewhat dissimilar from PCA method.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 50 条
  • [41] A First Approach to Face Dimensionality Reduction Through Denoising Autoencoders
    Pulgar, Francisco J.
    Charte, Francisco
    Rivera, Antonio J.
    del Jesus, Maria J.
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2018, PT I, 2018, 11314 : 439 - 447
  • [42] Dimensionality reduction through convolutional autoencoders for fracture patterns prediction
    Shinde, Krushna
    Itier, Vincent
    Mennesson, Jose
    Vasiukov, Dmytro
    Shakoor, Modesar
    [J]. APPLIED MATHEMATICAL MODELLING, 2023, 114 : 94 - 113
  • [43] Evaluation and Selection of Autoencoders for Expressive Dimensionality Reduction of Spatial Ensembles
    Gadirov, Hamid
    Tkachev, Gleb
    Ertl, Thomas
    Frey, Steffen
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 : 222 - 234
  • [44] GCM Data Analysis Using Dimensionality Reduction
    Li, Zuoling
    Weng, Guirong
    [J]. ADVANCES IN COMPUTER SCIENCE AND EDUCATION, 2012, 140 : 217 - 222
  • [45] IDA: Improving distribution analysis for reducing data complexity and dimensionality in hyperspectral images
    AL-Alimi, Dalal
    Al-qaness, Mohammed A.
    Cai, Zhihua
    Alawamy, Eman Ahmed
    [J]. PATTERN RECOGNITION, 2023, 134
  • [46] Interpolation of missing swaption volatility data using variational autoencoders
    Richert I.
    Buch R.
    [J]. Behaviormetrika, 2024, 51 (1) : 291 - 317
  • [47] Synthesizing credit data using autoencoders and generative adversarial networks
    Oreski, Goran
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [48] Using convolutional neural network autoencoders to understand unlabeled data
    Edwards, Samuel
    Lee, Michael S.
    [J]. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
  • [49] Physiological Waveform Imputation of Missing Data using Convolutional Autoencoders
    Miller, Daniel
    Ward, Andrew
    Bambos, Nicholas
    Scheinker, David
    Shin, Andrew
    [J]. 2018 IEEE 20TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2018,
  • [50] Anomaly detection in gravitational waves data using convolutional autoencoders
    Morawski, Filip
    Bejger, Michal
    Cuoco, Elena
    Petre, Luigia
    [J]. Machine Learning: Science and Technology, 2021, 2 (04):