Physiological Waveform Imputation of Missing Data using Convolutional Autoencoders

被引:0
|
作者
Miller, Daniel [1 ]
Ward, Andrew [1 ]
Bambos, Nicholas [1 ]
Scheinker, David [2 ]
Shin, Andrew [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Div Pediat Cardiol, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine Learning has great potential to improve automated real-time patient diagnostics. For the majority of machine learning algorithms, taking advantage of this potential requires a complete dataset with no missing data. In practice, missing values are estimated using a variety of imputation methods in the pre-processing stage. However, with time-series data, and physiological waveforms in particular, imputation can be difficult due to the unique patterns and shapes of each waveform, as well as how these patterns vary between patients, and even for a single patient over longer durations. We demonstrate that deep learning techniques can reconstruct missing data using patient-specific patterns present in the non-missing portions of the waveform. Using convolutional neural network (CNN) autoencoders trained on 288 15-minute samples from each of 138 pediatric patients, we develop a generalizable model to analyze and extract information from arbitrary physiological waveforms, and use this model to develop methods for mid-channel missing time-series imputation. We further show that the autoencoder can be used to compress the dense physiological waveforms to a low-dimensional representational space.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Imputation of Missing Traffic Flow Data Using Denoising Autoencoders
    Jiang, Boyuan
    Siddiqi, Muhammad Danial
    Asadi, Reza
    Regan, Amelia
    [J]. 12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 84 - 91
  • [2] MIDIA: exploring denoising autoencoders for missing data imputation
    Qian Ma
    Wang-Chien Lee
    Tao-Yang Fu
    Yu Gu
    Ge Yu
    [J]. Data Mining and Knowledge Discovery, 2020, 34 : 1859 - 1897
  • [3] MIDIA: exploring denoising autoencoders for missing data imputation
    Ma, Qian
    Lee, Wang-Chien
    Fu, Tao-Yang
    Gu, Yu
    Yu, Ge
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) : 1859 - 1897
  • [4] MISSING DATA IMPUTATION IN THE ELECTRONIC HEALTH RECORD USING DEEPLY LEARNED AUTOENCODERS
    Beaulieu-Jones, Brett K.
    Moore, Jason H.
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 207 - 218
  • [5] Missing value imputation in food composition data with denoising autoencoders
    Gjorshoska, Ivana
    Eftimov, Tome
    Trajanov, Dimitar
    [J]. JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2022, 112
  • [6] Missing Data Imputation via Denoising Autoencoders: The Untold Story
    Costa, Adriana Fonseca
    Santos, Miriam Seoane
    Soares, Jastin Pompeu
    Abreu, Pedro Henriques
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 87 - 98
  • [7] Variational Autoencoders for Missing Data Imputation with Application to a Simulated Milling Circuit
    McCoy, John T.
    Kroon, Steve
    Auret, Lidia
    [J]. IFAC PAPERSONLINE, 2018, 51 (21): : 141 - 146
  • [8] Reviewing Autoencoders for Missing Data Imputation: Technical Trends, Applications and Outcomes
    Pereira, Ricardo Cardoso
    Santos, Miriam Seoane
    Rodrigues, Pedro Pereira
    Abreu, Pedro Henriques
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 69 : 1255 - 1285
  • [9] Reviewing autoencoders for missing data imputation: Technical trends, applications and outcomes
    Pereira, Ricardo Cardoso
    Santos, Miriam Seoane
    Rodrigues, Pedro Pereira
    Abreu, Pedro Henriques
    [J]. Journal of Artificial Intelligence Research, 2020, 69 : 1255 - 1285
  • [10] Unsupervised Imputation of Non-Ignorably Missing Data Using Importance-Weighted Autoencoders
    Lim, David K.
    Rashid, Naim U.
    Oliva, Junier B.
    Ibrahim, Joseph G.
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2024,