共 50 条
- [1] Leveraging Variational Autoencoders for Multiple Data Imputation [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 491 - 506
- [2] MIDIA: exploring denoising autoencoders for missing data imputation [J]. Data Mining and Knowledge Discovery, 2020, 34 : 1859 - 1897
- [4] Posterior Consistency for Missing Data in Variational Autoencoders [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 508 - 524
- [5] Quantum Circuit for Imputation of Missing Data [J]. IEEE Transactions on Quantum Engineering, 2024, 5
- [7] Physiological Waveform Imputation of Missing Data using Convolutional Autoencoders [J]. 2018 IEEE 20TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM), 2018,
- [8] Missing Data Imputation via Denoising Autoencoders: The Untold Story [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 87 - 98
- [9] Imputation of Missing Traffic Flow Data Using Denoising Autoencoders [J]. 12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 84 - 91
- [10] Reviewing Autoencoders for Missing Data Imputation: Technical Trends, Applications and Outcomes [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 69 : 1255 - 1285