Posterior Consistency for Missing Data in Variational Autoencoders

被引:0
|
作者
Sudak, Timur [1 ]
Tschiatschek, Sebastian [1 ,2 ]
机构
[1] Univ Vienna, Fac Comp Sci, Vienna, Austria
[2] Univ Vienna, Res Network Data Sci, Vienna, Austria
关键词
Variational Autoencoders; Missing Data;
D O I
10.1007/978-3-031-43415-0_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of learning Variational Autoencoders (VAEs), i.e., a type of deep generative model, from data with missing values. Such data is omnipresent in real-world applications of machine learning because complete data is often impossible or too costly to obtain. We particularly focus on improving a VAE's amortized posterior inference, i.e., the encoder, which in the case of missing data can be susceptible to learning inconsistent posterior distributions regarding the missingness. To this end, we provide a formal definition of posterior consistency and propose an approach for regularizing an encoder's posterior distribution which promotes this consistency. We observe that the proposed regularization suggests a different training objective than that typically considered in the literature when facing missing values. Furthermore, we empirically demonstrate that our regularization leads to improved performance in missing value settings in terms of reconstruction quality and downstream tasks utilizing uncertainty in the latent space. This improved performance can be observed for many classes of VAEs including VAEs equipped with normalizing flows.
引用
收藏
页码:508 / 524
页数:17
相关论文
共 50 条
  • [1] Supervised Variational Autoencoders for Soft Sensor Modeling With Missing Data
    Xie, Ruimin
    Jan, Nabil Magbool
    Hao, Kuangrong
    Chen, Lei
    Huang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) : 2820 - 2828
  • [2] Interpolation of missing swaption volatility data using variational autoencoders
    Richert I.
    Buch R.
    Behaviormetrika, 2024, 51 (1) : 291 - 317
  • [3] Variational Autoencoders for Missing Data Imputation with Application to a Simulated Milling Circuit
    McCoy, John T.
    Kroon, Steve
    Auret, Lidia
    IFAC PAPERSONLINE, 2018, 51 (21): : 141 - 146
  • [4] Learning conditional variational autoencoders with missing covariates
    Ramchandran, Siddharth
    Tikhonov, Gleb
    Lonnroth, Otto
    Tiikkainen, Pekka
    Lahdesmaki, Harri
    PATTERN RECOGNITION, 2024, 147
  • [5] Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values
    Abroshan, Mahed
    Yip, Kai Hou
    Tekin, Cem
    van der Schaar, Mihaela
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 6368 - 6378
  • [6] Analysis of Variational Autoencoders for Imputing Missing Values from Sensor Data of Marine Systems
    Velasco-Gallego, Christian
    Lazakis, Iraklis
    JOURNAL OF SHIP RESEARCH, 2022, 66 (03): : 193 - 203
  • [7] Addressing posterior collapse by splitting decoders in variational recurrent autoencoders
    Sun, Jianyong
    Song, Fan
    Li, Qiaohong
    NEUROCOMPUTING, 2024, 570
  • [8] Reconstructing Missing Data in State Estimation With Autoencoders
    Miranda, Vladimiro
    Krstulovic, Jakov
    Keko, Hrvoje
    Moreira, Cristiano
    Pereira, Jorge
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (02) : 604 - 611
  • [9] Leveraging Variational Autoencoders for Multiple Data Imputation
    Roskams-Hieter, Breeshey
    Wells, Jude
    Wade, Sara
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 491 - 506
  • [10] Medical Data Wrangling With Sequential Variational Autoencoders
    Barrejon, Daniel
    Olmos, Pablo M.
    Artes-Rodriguez, Antonio
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (06) : 2737 - 2745