Posterior Consistency for Missing Data in Variational Autoencoders

被引:0
|
作者
Sudak, Timur [1 ]
Tschiatschek, Sebastian [1 ,2 ]
机构
[1] Univ Vienna, Fac Comp Sci, Vienna, Austria
[2] Univ Vienna, Res Network Data Sci, Vienna, Austria
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II | 2023年 / 14170卷
关键词
Variational Autoencoders; Missing Data;
D O I
10.1007/978-3-031-43415-0_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of learning Variational Autoencoders (VAEs), i.e., a type of deep generative model, from data with missing values. Such data is omnipresent in real-world applications of machine learning because complete data is often impossible or too costly to obtain. We particularly focus on improving a VAE's amortized posterior inference, i.e., the encoder, which in the case of missing data can be susceptible to learning inconsistent posterior distributions regarding the missingness. To this end, we provide a formal definition of posterior consistency and propose an approach for regularizing an encoder's posterior distribution which promotes this consistency. We observe that the proposed regularization suggests a different training objective than that typically considered in the literature when facing missing values. Furthermore, we empirically demonstrate that our regularization leads to improved performance in missing value settings in terms of reconstruction quality and downstream tasks utilizing uncertainty in the latent space. This improved performance can be observed for many classes of VAEs including VAEs equipped with normalizing flows.
引用
收藏
页码:508 / 524
页数:17
相关论文
共 50 条
  • [11] Variational Autoencoders for Data Augmentation in Clinical Studies
    Papadopoulos, Dimitris
    Karalis, Vangelis D.
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [12] Variational Autoencoders for Sparse and Overdispersed Discrete Data
    Zhao, He
    Rai, Piyush
    Du, Lan
    Buntine, Wray
    Phung, Dinh
    Zhou, Mingyuan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1684 - 1693
  • [13] Empirical Evaluation of Variational Autoencoders for Data Augmentation
    Jorge, Javier
    Vieco, Jesus
    Paredes, Roberto
    Andreu Sanchez, Joan
    Miguel Benedi, Jose
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 96 - 104
  • [14] Data Augmentation with Variational Autoencoders and Manifold Sampling
    Chadebec, Clement
    Allassonniere, Stephanie
    DEEP GENERATIVE MODELS, AND DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, 2021, 13003 : 184 - 192
  • [15] Benchmarking variational AutoEncoders on cancer transcriptomics data
    Eltager, Mostafa
    Abdelaal, Tamim
    Charrout, Mohammed
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    Makrodimitris, Stavros
    PLOS ONE, 2023, 18 (10):
  • [16] Deterministic Decoding for Discrete Data in Variational Autoencoders
    Polykovskiy, Daniil
    Vetrov, Dmitry
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3046 - 3055
  • [17] MIDIA: exploring denoising autoencoders for missing data imputation
    Qian Ma
    Wang-Chien Lee
    Tao-Yang Fu
    Yu Gu
    Ge Yu
    Data Mining and Knowledge Discovery, 2020, 34 : 1859 - 1897
  • [18] MIDIA: exploring denoising autoencoders for missing data imputation
    Ma, Qian
    Lee, Wang-Chien
    Fu, Tao-Yang
    Gu, Yu
    Yu, Ge
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) : 1859 - 1897
  • [19] Variational autoencoders for 3D data processing
    Szilárd Molnár
    Levente Tamás
    Artificial Intelligence Review, 57
  • [20] Variational autoencoders for 3D data processing
    Molnar, Szilard
    Tamas, Levente
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (02)