Data Augmentation with Variational Autoencoders and Manifold Sampling

被引:8
|
作者
Chadebec, Clement [1 ]
Allassonniere, Stephanie [1 ]
机构
[1] Sorbonne Univ, Univ Paris, Ctr Rech Cordeliers, INRIA,INSERM, Paris, France
关键词
Data augmentation; VAE; Latent space modelling;
D O I
10.1007/978-3-030-88210-5_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new efficient way to sample from a Variational Autoencoder in the challenging low sample size setting (A code is available at https://github.com/clementchadebec/Data_Augmentation_with_VAE-DALI). This method reveals particularly well suited to perform data augmentation in such a low data regime and is validated across various standard and real-life data sets. In particular, this scheme allows to greatly improve classification results on the OASIS database where balanced accuracy jumps from 80.7% for a classifier trained with the raw data to 88.6% when trained only with the synthetic data generated by our method. Such results were also observed on 3 standard data sets and with other classifiers.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [1] Variational Autoencoders for Data Augmentation in Clinical Studies
    Papadopoulos, Dimitris
    Karalis, Vangelis D.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [2] Empirical Evaluation of Variational Autoencoders for Data Augmentation
    Jorge, Javier
    Vieco, Jesus
    Paredes, Roberto
    Andreu Sanchez, Joan
    Miguel Benedi, Jose
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 96 - 104
  • [3] Data augmentation using Variational Autoencoders for improvement of respiratory disease classification
    Saldanha, Jane
    Chakraborty, Shaunak
    Patil, Shruti
    Kotecha, Ketan
    Kumar, Satish
    Nayyar, Anand
    [J]. PLOS ONE, 2022, 17 (08):
  • [4] Learning Manifold Dimensions with Conditional Variational Autoencoders
    Zheng, Yijia
    He, Tong
    Qiu, Yixuan
    Wipf, David
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [5] Empirical Evaluation of Variational Autoencoders and Denoising Diffusion Models for Data Augmentation in Bioacoustics Classification
    Herbst, Charles
    Jeantet, Lorene
    Dufourq, Emmanuel
    [J]. SOUTH AFRICAN COMPUTER SCIENCE AND INFORMATION SYSTEMS RESEARCH TRENDS, SAICSIT 2024, 2024, 2159 : 45 - 61
  • [6] DCNN Augmentation via Synthetic Data from Variational Autoencoders and Generative Adversarial Networks
    Kornish, David
    Ezekiel, Soundararajan
    Cornacchia, Maria
    [J]. 2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [7] Speculative Sampling in Variational Autoencoders for Dialogue Response Generation
    Sato, Shoetsu
    Yoshinaga, Naoki
    Toyoda, Masashi
    Kitsuregawa, Masaru
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 4739 - 4745
  • [8] Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders
    Middleton, Jon
    Bauer, Marko
    Johansen, Jacob
    Nielsen, Mads
    Sommer, Stefan
    Pai, Akshay
    [J]. MEDICAL APPLICATIONS WITH DISENTANGLEMENTS, MAD 2022, 2023, 13823 : 49 - 58
  • [9] Data Augmentation with Cross-Modal Variational Autoencoders (<monospace>DACMVA</monospace>) for Cancer Survival Prediction
    Rajaram, Sara
    Mitchell, Cassie S.
    [J]. INFORMATION, 2024, 15 (01)
  • [10] Leveraging Variational Autoencoders for Multiple Data Imputation
    Roskams-Hieter, Breeshey
    Wells, Jude
    Wade, Sara
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 491 - 506