Data Augmentation with Variational Autoencoders and Manifold Sampling

被引:8
|
作者
Chadebec, Clement [1 ]
Allassonniere, Stephanie [1 ]
机构
[1] Sorbonne Univ, Univ Paris, Ctr Rech Cordeliers, INRIA,INSERM, Paris, France
关键词
Data augmentation; VAE; Latent space modelling;
D O I
10.1007/978-3-030-88210-5_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new efficient way to sample from a Variational Autoencoder in the challenging low sample size setting (A code is available at https://github.com/clementchadebec/Data_Augmentation_with_VAE-DALI). This method reveals particularly well suited to perform data augmentation in such a low data regime and is validated across various standard and real-life data sets. In particular, this scheme allows to greatly improve classification results on the OASIS database where balanced accuracy jumps from 80.7% for a classifier trained with the raw data to 88.6% when trained only with the synthetic data generated by our method. Such results were also observed on 3 standard data sets and with other classifiers.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [21] Variational autoencoders learn transferrable representations of metabolomics data
    Daniel P. Gomari
    Annalise Schweickart
    Leandro Cerchietti
    Elisabeth Paietta
    Hugo Fernandez
    Hassen Al-Amin
    Karsten Suhre
    Jan Krumsiek
    [J]. Communications Biology, 5
  • [22] A Generation of Enhanced Data by Variational Autoencoders and Diffusion Modeling
    Kim, Young-Jun
    Lee, Seok-Pil
    [J]. ELECTRONICS, 2024, 13 (07)
  • [23] SIMPLER IS BETTER: SPECTRAL REGULARIZATION AND UP-SAMPLING TECHNIQUES FOR VARIATIONAL AUTOENCODERS
    Bjork, Sara
    Myhre, Jonas Nordhaug
    Johansen, Thomas Haugland
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3778 - 3782
  • [24] Mixture variational autoencoders
    Jiang, Shuoran
    Chen, Yarui
    Yang, Jucheng
    Zhang, Chuanlei
    Zhao, Tingting
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 263 - 269
  • [25] Improving Online non-destructive Moisture Content Estimation using Data Augmentation by Feature Space Interpolation with Variational Autoencoders
    Wewer, Christian Remi
    Iosifidis, Alexandros
    [J]. 2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,
  • [26] Mixtures of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    [J]. 2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [27] Subitizing with Variational Autoencoders
    Wever, Rijnder
    Runia, Tom F. H.
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 617 - 627
  • [28] An Introduction to Variational Autoencoders
    Kingma, Diederik P.
    Welling, Max
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04): : 4 - 89
  • [29] Variational Laplace Autoencoders
    Park, Yookoon
    Kim, Chris Dongjoo
    Kim, Gunhee
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [30] Overdispersed Variational Autoencoders
    Shah, Harshil
    Barber, David
    Botev, Aleksandar
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1109 - 1116