Data Augmentation with Variational Autoencoders and Manifold Sampling

被引:8
|
作者
Chadebec, Clement [1 ]
Allassonniere, Stephanie [1 ]
机构
[1] Sorbonne Univ, Univ Paris, Ctr Rech Cordeliers, INRIA,INSERM, Paris, France
关键词
Data augmentation; VAE; Latent space modelling;
D O I
10.1007/978-3-030-88210-5_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new efficient way to sample from a Variational Autoencoder in the challenging low sample size setting (A code is available at https://github.com/clementchadebec/Data_Augmentation_with_VAE-DALI). This method reveals particularly well suited to perform data augmentation in such a low data regime and is validated across various standard and real-life data sets. In particular, this scheme allows to greatly improve classification results on the OASIS database where balanced accuracy jumps from 80.7% for a classifier trained with the raw data to 88.6% when trained only with the synthetic data generated by our method. Such results were also observed on 3 standard data sets and with other classifiers.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [41] A Data Augmentation Model Based on Variational Approach
    Xia, Lei
    Lv, Jiancheng
    Xu, Yong
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT II, 2018, 11302 : 157 - 168
  • [42] Unsupervised Surface Defect Detection Using Deep Autoencoders and Data Augmentation
    Mujeeb, Abdul
    Dai, Wenting
    Erdt, Marius
    Sourin, Alexei
    [J]. 2018 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2018, : 391 - 398
  • [43] Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data
    Milano, Nicola
    Casella, Monica
    Esposito, Raffaella
    Marocco, Davide
    [J]. BEHAVIORAL SCIENCES, 2024, 14 (07)
  • [44] Lifelong Mixture of Variational Autoencoders
    Ye, Fei
    Bors, Adrian G.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 461 - 474
  • [45] Variational Autoencoders for Assessing Sustainability
    Fernando Romero-Canizares, Jose
    Vicente-Galindo, Purificacion
    [J]. DOCTORAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGIES - DSICT, 2022, 846 : 47 - 62
  • [46] Quality metrics of variational autoencoders
    Leontev, Mikhail
    Mikheev, Alexander
    Sviatov, Kirill
    Sukhov, Sergey
    [J]. 2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [47] Efficient Evolution of Variational Autoencoders
    Hajewski, Jeff
    Oliveira, Suely
    [J]. 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1541 - 1550
  • [48] Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems
    Zeng, Kevin
    De Jesus, Carlos E. Perez
    Fox, Andrew J.
    Graham, Michael D.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [49] Exploring DNA Methylation Data of Lung Cancer Samples with Variational Autoencoders
    Wang, Zhenxing
    Wang, Yadong
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 1286 - 1289
  • [50] Combining variational autoencoders and physical bias for improved microscopy data analysis
    Biswas, Arpan
    Ziatdinov, Maxim
    Kalinin, Sergei, V
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):