Unsupervised Surface Defect Detection Using Deep Autoencoders and Data Augmentation

被引:26
|
作者
Mujeeb, Abdul [1 ]
Dai, Wenting [2 ]
Erdt, Marius [3 ]
Sourin, Alexei [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] Nanyang Technol Univ, Fraunhofer Res Ctr, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Defect Detection; AOI; Deep Learning; Autoencoders; Unsupervised Learning; Data Augmentation; Similarity Matching;
D O I
10.1109/CW.2018.00076
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Surface level defect detection, such as detecting missing components, misalignments and physical damages, is an important step in any manufacturing process. In this paper, similarity matching techniques for manufacturing defect detection are discussed. We are proposing an algorithm which detects surface level defects without relying on the availability of defect samples for training. Furthermore, we are also proposing a method which works when only one or a few reference images are available. It implements a deep autoencoder network and trains input reference image(s) along with various copies automatically generated by data augmentation. The trained network is then able to generate a descriptor-a unique signature of the reference image. After training, a test image of the same product is sent to the trained network to generate a test image descriptor. By matching the reference and test descriptors, a similarity score is generated which indicates if a defect is found. Our experiments show that this approach is more generic than traditional hand-engineered feature extraction methods and it can be applied to detect multiple type of defects.
引用
收藏
页码:391 / 398
页数:8
相关论文
共 50 条
  • [1] Synthetic data augmentation for surface defect detection and classification using deep learning
    Saksham Jain
    Gautam Seth
    Arpit Paruthi
    Umang Soni
    Girish Kumar
    [J]. Journal of Intelligent Manufacturing, 2022, 33 : 1007 - 1020
  • [2] Synthetic data augmentation for surface defect detection and classification using deep learning
    Jain, Saksham
    Seth, Gautam
    Paruthi, Arpit
    Soni, Umang
    Kumar, Girish
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (04) : 1007 - 1020
  • [3] Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
    Principi, Emanuele
    Rossetti, Damiano
    Squartini, Stefano
    Piazza, Francesco
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 441 - 451
  • [4] Malignant Microcalcification Clusters Detection using Unsupervised Deep Autoencoders
    Hou, Rui
    Ren, Yinhao
    Grimm, Lars J.
    Mazurowski, Maciej A.
    Marks, Jeffrey R.
    King, Lorraine
    Maley, Carlo C.
    Hwang, E. Shelley
    Lo, Joseph Y.
    [J]. MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [5] Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
    Emanuele Principi
    Damiano Rossetti
    Stefano Squartini
    Francesco Piazza
    [J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (02) : 441 - 451
  • [6] Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering
    Amarbayasgalan, Tsatsral
    Jargalsaikhan, Bilguun
    Ryu, Keun Ho
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (09):
  • [7] Deep learning for photovoltaic defect detection using variational autoencoders
    Westraadt, Edward J.
    Brettenny, Warren J.
    Clohessy, Chantelle M.
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 2023, 119 (1-2)
  • [8] Synchrophasor Data Event Detection using Unsupervised Wavelet Convolutional Autoencoders
    Buckelew, Jacob
    Basumallik, Sagnik
    Sivaramakrishnan, Vasavi
    Mukhopadhyay, Ayan
    Srivastava, Anurag K.
    Dubey, Abhishek
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 326 - 331
  • [9] Unsupervised network traffic anomaly detection with deep autoencoders
    Dutta, Vibekananda
    Pawlicki, Marek
    Kozik, Rafal
    Choras, Michal
    [J]. LOGIC JOURNAL OF THE IGPL, 2022, 30 (06) : 912 - 925
  • [10] Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering
    Maleki, Sepehr
    Maleki, Sasan
    Jennings, Nicholas R.
    [J]. APPLIED SOFT COMPUTING, 2021, 108