Quantum Confinement of Electron-Phonon Coupling in Graphene Quantum Dots

被引:9
|
作者
Zacharias, Marios [1 ,2 ]
Kelires, Pantelis C. [1 ,2 ]
机构
[1] Cyprus Univ Technol, Res Unit Nanostruct Mat Syst, CY-3603 Limassol, Cyprus
[2] Cyprus Univ Technol, Dept Mech & Mat Sci Engn, CY-3603 Limassol, Cyprus
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2021年 / 12卷 / 40期
关键词
HEXAGONAL BORON-NITRIDE; TEMPERATURE-DEPENDENCE; PHOTOLUMINESCENCE; NITROGEN;
D O I
10.1021/acs.jpclett.1c02899
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of first-principles calculations and the special displacement method, we demonstrate the quantum confinement scaling law of the phonon-induced gap renormalization of graphene quantum dots (GQDs). We employ zigzag-edged GQDs with hydrogen passivation and embedded in hexagonal boron nitride. Our calculations for GQDs in the sub-10 nm region reveal strong quantum confinement of the zero-point renormalization ranging from 20 to 250 meV. To obtain these values we introduce a correction to the Allen-Heine theory of temperature-dependent energy levels that arises from the phonon-induced splitting of 2-fold degenerate edge states. This correction amounts to more than 50% of the gap renormalization. We also present momentum-resolved spectral functions of GQDs, which are not reported in previous contributions. Our results lay the foundation to systematically engineer temperature-dependent electronic structures of GQDs for applications in solar cells, electronic transport, and quantum computing devices.
引用
收藏
页码:9940 / 9946
页数:7
相关论文
共 50 条
  • [31] Electron-phonon interaction in absorption and photoluminescence spectra of quantum dots
    Cheche, TO
    Chang, MC
    Lin, SH
    [J]. CHEMICAL PHYSICS, 2005, 309 (2-3) : 109 - 114
  • [32] Transport properties of quantum dots with strong electron-phonon interaction
    Tasai, T
    Eto, M
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 139 - 142
  • [33] Quantum confinement of phonon modes in GaAs quantum dots
    Ren, SF
    Gu, ZQ
    Lu, DY
    [J]. SOLID STATE COMMUNICATIONS, 1999, 113 (05) : 273 - 277
  • [34] Quantum simulation of many-body effects in steady-state nonequilibrium: Electron-phonon coupling in quantum dots
    Han, JE
    [J]. PHYSICAL REVIEW B, 2006, 73 (12)
  • [35] Effects of confinement on electron-phonon coupling for the two-dimensional electron gas in a GaAs/AlGaAs quantum well
    Hawker, P
    Jagadish, C
    Melloch, MR
    [J]. PHYSICA B-CONDENSED MATTER, 1996, 219-20 : 62 - 64
  • [36] POLAR-OPTICAL OSCILLATIONS AND ELECTRON-PHONON INTERACTION IN QUANTUM WIRES AND QUANTUM DOTS
    TRALLEROGINER, C
    [J]. PHYSICA SCRIPTA, 1994, 55 : 50 - 56
  • [37] Quantum electron transport through carbon nanotubes with electron-phonon coupling
    Ishii, Hiroyuki
    Kobayashi, Nobuhiko
    Hirose, Kenji
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02): : 882 - 886
  • [38] Influence of phonon confinement on the optically detected electron-phonon resonance linewidth in quantum wells
    Nguyen Dinh Hien
    Le Dinh
    Vo Thanh Lam
    Tran Cong Phong
    [J]. 3RD INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL PHYSICS: COMPLEX SYSTEMS AND INTERDISCIPLINARY PHYSICS (IWTCP-3) AND 40TH NATIONAL CONFERENCE ON THEORETICAL PHYSICS (NCTP-40), 2016, 726
  • [39] Electron-phonon quantum kinetics in the strong-coupling regime
    Steinbach, D
    Kocherscheidt, G
    Wehner, MU
    Kalt, H
    Wegener, M
    Ohkawa, K
    Hommel, D
    Axt, VM
    [J]. PHYSICAL REVIEW B, 1999, 60 (17) : 12079 - 12090
  • [40] Impact of electron-phonon coupling on the quantum yield of photovoltaic devices
    Nematiaram, Tahereh
    Asgari, Asghar
    Mayou, Didier
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (04):