Quantum Confinement of Electron-Phonon Coupling in Graphene Quantum Dots

被引:9
|
作者
Zacharias, Marios [1 ,2 ]
Kelires, Pantelis C. [1 ,2 ]
机构
[1] Cyprus Univ Technol, Res Unit Nanostruct Mat Syst, CY-3603 Limassol, Cyprus
[2] Cyprus Univ Technol, Dept Mech & Mat Sci Engn, CY-3603 Limassol, Cyprus
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2021年 / 12卷 / 40期
关键词
HEXAGONAL BORON-NITRIDE; TEMPERATURE-DEPENDENCE; PHOTOLUMINESCENCE; NITROGEN;
D O I
10.1021/acs.jpclett.1c02899
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of first-principles calculations and the special displacement method, we demonstrate the quantum confinement scaling law of the phonon-induced gap renormalization of graphene quantum dots (GQDs). We employ zigzag-edged GQDs with hydrogen passivation and embedded in hexagonal boron nitride. Our calculations for GQDs in the sub-10 nm region reveal strong quantum confinement of the zero-point renormalization ranging from 20 to 250 meV. To obtain these values we introduce a correction to the Allen-Heine theory of temperature-dependent energy levels that arises from the phonon-induced splitting of 2-fold degenerate edge states. This correction amounts to more than 50% of the gap renormalization. We also present momentum-resolved spectral functions of GQDs, which are not reported in previous contributions. Our results lay the foundation to systematically engineer temperature-dependent electronic structures of GQDs for applications in solar cells, electronic transport, and quantum computing devices.
引用
收藏
页码:9940 / 9946
页数:7
相关论文
共 50 条
  • [21] Polaron states in InAs/GaAs quantum dots:: strong electron-phonon coupling regime
    Deleporte, E
    Hameau, S
    Isaia, JN
    Guldner, Y
    Verzelen, O
    Ferreira, R
    Bastard, G
    Zeman, J
    Gérard, JM
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 155 - 160
  • [22] Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots
    Berkinsky, David B.
    Proppe, Andrew H.
    Utzat, Hendrik
    Krajewska, Chantalle J.
    Sun, Weiwei
    Sverko, Tara
    Yoo, Jason J.
    Chung, Heejae
    Won, Yu-Ho
    Jang, Eunjoo
    Bawendi, Moungi G.
    [J]. ACS NANO, 2023, : 3598 - 3609
  • [23] Effect of the electron-phonon coupling on barrier D- quantum dots in magnetic fields
    Xie, WF
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (01) : 99 - 104
  • [24] ELECTRON-PHONON COUPLING IN GRAPHENE
    Milosevic, Ivanka
    Kepcija, Nenad
    Dobardzic, Edib
    Damnjanovic, Milan
    Mohr, Marcel
    Maultzsch, Janina
    Thomsen, Christian
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (6-7): : 655 - 660
  • [25] Electron-phonon interaction in quantum transport through quantum dots and molecular systems
    Ojeda, J. H.
    Duque, C. A.
    Laroze, D.
    [J]. PHYSICA B-CONDENSED MATTER, 2016, 502 : 73 - 81
  • [26] Electron-Phonon coupling in magnetized semiconductor quantum plasmas
    Ghosh, S.
    Muley, Apurva
    [J]. FRONTIERS OF PHYSICS AND PLASMA SCIENCE, 2017, 836
  • [27] Effects of electron-phonon coupling on quantum interference in polyenes
    Tsuji, Yuta
    Yoshizawa, Kazunari
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (13):
  • [28] Electron-phonon quantum kinetics in the strong coupling regime
    Steinbach, D
    Kocherscheidt, G
    Wehner, MU
    Kalt, H
    Wegener, M
    Ohkawa, K
    Hommel, D
    [J]. JOURNAL OF LUMINESCENCE, 1999, 83-4 : 155 - 160
  • [29] Coherent electron-phonon coupling in tailored quantum systems
    Roulleau, P.
    Baer, S.
    Choi, T.
    Molitor, F.
    Guettinger, J.
    Mueller, T.
    Droescher, S.
    Ensslin, K.
    Ihn, T.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [30] Electron-phonon interaction in the dynamics of trap filling in quantum dots
    Monreal, R. Carmina
    [J]. PHYSICAL REVIEW B, 2021, 104 (18)