Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model

被引:20
|
作者
Quevedo, Renata Pacheco [1 ]
Maciel, Daniel Andrade [1 ,9 ]
Uehara, Tatiana Dias Tardelli [1 ]
Vojtek, Matej [2 ]
Renno, Camilo Daleles [1 ]
Pradhan, Biswajeet [3 ,4 ,5 ,6 ]
Vojtekova, Jana [2 ]
Quoc Bao Pham [7 ,8 ]
机构
[1] Natl Inst Space Res INPE, Earth Observat & Geoinformat Div, Sao Paulo, Brazil
[2] Constantine Philosopher Univ Nitra, Fac Nat Sci, Dept Geog & Reg Dev, Nitra, Slovakia
[3] Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Ultimo, NSW, Australia
[4] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea
[5] King Abdulaziz Univ, Ctr Excellence Climate Change Res, Jeddah, Saudi Arabia
[6] Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Malaysia
[7] Thu Dau Mot Univ, Inst Appl Technol, Thu Dau Mot City, Vietnam
[8] Univ Silesia Katowice, Fac Nat Sci, Inst Earth Sci, Sosnowiec, Poland
[9] Natl Inst Space Res INPE, Earth Observat Coordinat, Instrumentat Lab Aquat Syst LabISA, Sao Jose Dos Campos, SP, Brazil
关键词
Landslide susceptibility; GIS; random forest; spatial autocorrelation; XGBoost; SUPPORT VECTOR MACHINE; FUZZY MULTICRITERIA; RIVER-BASIN; GIS; PREDICTION; SENSITIVITY; UNCERTAINTY; CLASSIFIER; REGRESSION; PATTERNS;
D O I
10.1080/10106049.2021.1996637
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Most previous studies of landslide susceptibility mapping (LSM) have not contemplated spatial heterogeneity and the commonly used models for LSM are aspatial, which could reduce model performance. Therefore, aiming to evaluate the applicability of spatial algorithms to predict landslide susceptibility, the performance of geographical random forest (GRF) was evaluated, in comparison to random forest (RF) and extreme gradient boosting (XGBoost). Based on the results, GRF presented the better performance (AUC = 0.876), followed by RF (AUC = 0.748) and XGBoost (AUC = 0.745). GRF also provided the most suitable susceptibility map. While RF and XGBoost presented almost 50% of the study area as susceptible, the GRF presented more concentrated susceptibility areas spatially, with a reasonable area for moderate (15.55%), high (8.73%) and very-high (2.59%) susceptibility classes. Finally, it can be inferred that spatial assessment may improve model performance, and that spatial models have a great potential for LSM.
引用
收藏
页码:8190 / 8213
页数:24
相关论文
共 50 条
  • [21] Optimizing landslide susceptibility mapping using integrated forest by penalizing attributes model with ensemble algorithms
    Chen, Wei
    Wang, Chao
    Zhao, Xia
    Bai, Li
    He, Qingfeng
    Chen, Xi
    Zhao, Qifei
    Zhao, Ruixin
    Li, Tao
    Tsangaratos, Paraskevas
    Ilia, Ioanna
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)
  • [22] Study on landslide susceptibility mapping with different factor screening methods and random forest models
    Gu, Tengfei
    Li, Jia
    Wang, Mingguo
    Duan, Ping
    Zhang, Yanke
    Cheng, Libo
    PLOS ONE, 2023, 18 (10):
  • [23] Random Forest-Based Landslide Susceptibility Mapping in Coastal Regions of Artvin, Turkey
    Akinci, Halil
    Kilicoglu, Cem
    Dogan, Sedat
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (09)
  • [24] A Tool for Classification and Regression Using Random Forest Methodology: Applications to Landslide Susceptibility Mapping and Soil Thickness Modeling
    Daniela Lagomarsino
    V. Tofani
    S. Segoni
    F. Catani
    N. Casagli
    Environmental Modeling & Assessment, 2017, 22 : 201 - 214
  • [25] Comparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithm
    Pereira, Felicia Franca
    Mendes, Tatiana Sussel Goncalves
    Simoes, Silvio Jorge Coelho
    de Andrade, Marcio Roberto Magalhaes
    Reiss, Mario Luiz Lopes
    Renk, Jennifer Fortes Cavalcante
    Santos, Tatiany Correia da Silva
    LANDSLIDES, 2023, 20 (03) : 579 - 600
  • [26] Comparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithm
    Felicia França Pereira
    Tatiana Sussel Gonçalves Mendes
    Silvio Jorge Coelho Simões
    Márcio Roberto Magalhães de Andrade
    Mário Luiz Lopes Reiss
    Jennifer Fortes Cavalcante Renk
    Tatiany Correia da Silva Santos
    Landslides, 2023, 20 : 579 - 600
  • [27] A Tool for Classification and Regression Using Random Forest Methodology: Applications to Landslide Susceptibility Mapping and Soil Thickness Modeling
    Lagomarsino, Daniela
    Tofani, V.
    Segoni, S.
    Catani, F.
    Casagli, N.
    ENVIRONMENTAL MODELING & ASSESSMENT, 2017, 22 (03) : 201 - 214
  • [28] Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling
    Georganos, Stefanos
    Grippa, Tais
    Gadiaga, Assane Niang
    Linard, Catherine
    Lennert, Moritz
    Vanhuysse, Sabine
    Mboga, Nicholus
    Wolff, Eleonore
    Kalogirou, Stamatis
    GEOCARTO INTERNATIONAL, 2021, 36 (02) : 121 - 136
  • [29] Improving crop rotation classification using a random forest model incorporating spatial heterogeneity
    Wang, Xiaomi
    Tang, Qi
    Yang, Kang
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [30] A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping
    Sahin, Emrehan Kutlug
    Colkesen, Ismail
    Kavzoglu, Taskin
    GEOCARTO INTERNATIONAL, 2020, 35 (04) : 341 - 363