Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model

被引:20
|
作者
Quevedo, Renata Pacheco [1 ]
Maciel, Daniel Andrade [1 ,9 ]
Uehara, Tatiana Dias Tardelli [1 ]
Vojtek, Matej [2 ]
Renno, Camilo Daleles [1 ]
Pradhan, Biswajeet [3 ,4 ,5 ,6 ]
Vojtekova, Jana [2 ]
Quoc Bao Pham [7 ,8 ]
机构
[1] Natl Inst Space Res INPE, Earth Observat & Geoinformat Div, Sao Paulo, Brazil
[2] Constantine Philosopher Univ Nitra, Fac Nat Sci, Dept Geog & Reg Dev, Nitra, Slovakia
[3] Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst, Ultimo, NSW, Australia
[4] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul, South Korea
[5] King Abdulaziz Univ, Ctr Excellence Climate Change Res, Jeddah, Saudi Arabia
[6] Univ Kebangsaan Malaysia, Earth Observat Ctr, Inst Climate Change, Bangi, Malaysia
[7] Thu Dau Mot Univ, Inst Appl Technol, Thu Dau Mot City, Vietnam
[8] Univ Silesia Katowice, Fac Nat Sci, Inst Earth Sci, Sosnowiec, Poland
[9] Natl Inst Space Res INPE, Earth Observat Coordinat, Instrumentat Lab Aquat Syst LabISA, Sao Jose Dos Campos, SP, Brazil
关键词
Landslide susceptibility; GIS; random forest; spatial autocorrelation; XGBoost; SUPPORT VECTOR MACHINE; FUZZY MULTICRITERIA; RIVER-BASIN; GIS; PREDICTION; SENSITIVITY; UNCERTAINTY; CLASSIFIER; REGRESSION; PATTERNS;
D O I
10.1080/10106049.2021.1996637
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Most previous studies of landslide susceptibility mapping (LSM) have not contemplated spatial heterogeneity and the commonly used models for LSM are aspatial, which could reduce model performance. Therefore, aiming to evaluate the applicability of spatial algorithms to predict landslide susceptibility, the performance of geographical random forest (GRF) was evaluated, in comparison to random forest (RF) and extreme gradient boosting (XGBoost). Based on the results, GRF presented the better performance (AUC = 0.876), followed by RF (AUC = 0.748) and XGBoost (AUC = 0.745). GRF also provided the most suitable susceptibility map. While RF and XGBoost presented almost 50% of the study area as susceptible, the GRF presented more concentrated susceptibility areas spatially, with a reasonable area for moderate (15.55%), high (8.73%) and very-high (2.59%) susceptibility classes. Finally, it can be inferred that spatial assessment may improve model performance, and that spatial models have a great potential for LSM.
引用
收藏
页码:8190 / 8213
页数:24
相关论文
共 50 条
  • [41] Using the rotation and random forest models of ensemble learning to predict landslide susceptibility
    Zhao, Lingran
    Wu, Xueling
    Niu, Ruiqing
    Wang, Ying
    Zhang, Kaixiang
    GEOMATICS NATURAL HAZARDS & RISK, 2020, 11 (01) : 1542 - 1564
  • [42] Improved Landslide Susceptibility mapping using statistical MLR model
    Niraj, K. C.
    Singh, Ankit
    Shukla, Dericks Praise
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 33 - 36
  • [43] Landslide susceptibility assessment and mapping using new ensemble model
    Shen, ZhongJie
    Wang, Di
    Arabameri, Alireza
    Santosh, M.
    Egbueri, Johnbosco C.
    Arora, Aman
    ADVANCES IN SPACE RESEARCH, 2024, 74 (07) : 2859 - 2882
  • [44] An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest
    Xiao, Xin
    Zou, Yi
    Huang, Jiangcheng
    Luo, Xuan
    Yang, Luyi
    Li, Meng
    Yang, Pengwu
    Ji, Xuan
    Li, Yungang
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)
  • [45] Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand
    Oh, Hyun-Joo
    Lee, Saro
    Chotikasathien, Wisut
    Kim, Chang Hwan
    Kwon, Ju Hyoung
    ENVIRONMENTAL GEOLOGY, 2009, 57 (03): : 641 - 651
  • [46] Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
    Emrehan Kutlug Sahin
    SN Applied Sciences, 2020, 2
  • [47] Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
    Sahin, Emrehan Kutlug
    SN APPLIED SCIENCES, 2020, 2 (07):
  • [48] Terrain-based mapping of landslide susceptibility using a geographical information system: a case study
    Dai, FC
    Lee, CF
    CANADIAN GEOTECHNICAL JOURNAL, 2001, 38 (05) : 911 - 923
  • [49] Wildfire Susceptibility Mapping in Baikal Natural Territory Using Random Forest
    Nikolaychuk, Olga
    Pestova, Julia
    Yurin, Aleksandr
    FORESTS, 2024, 15 (01):
  • [50] Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods
    Wei Luo
    Cheng-Chien Liu
    Landslides, 2018, 15 : 465 - 474