VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks

被引:109
|
作者
Berger, Daniel R. [1 ]
Seung, H. Sebastian [2 ]
Lichtman, Jeff W. [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Comp Sci, Princeton Neurosci Inst, Princeton, NJ 08544 USA
基金
美国国家卫生研究院;
关键词
connectomics; segmentation; visualization; serial section electron microscopy; CLEM; proofreading; TrakEM2; voxel; SCANNING-ELECTRON-MICROSCOPY; DIRECTION-SELECTIVITY; WIRING SPECIFICITY; HIGH-RESOLUTION; CIRCUIT; NETWORK; RECONSTRUCTION; ANATOMY; SYSTEM;
D O I
10.3389/fncir.2018.00088
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent developments in serial-section electron microscopy allow the efficient generation of very large image data sets but analyzing such data poses challenges for software tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely available utility program for generating and editing annotations and segmentations of large volumetric image (voxel) data sets. It provides a simple yet powerful user interface for real-time exploration and analysis of large data sets even in the Petabyte range.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] CT evaluation prior to transapical aortic valve replacement: semi-automatic versus manual image segmentation
    Borek Foldyna
    Camelia Jungert
    Christian Luecke
    Konstantin von Aspern
    Sonja Boehmer-Lasthaus
    Eva Maria Rueth
    Matthias Grothoff
    Stefan Nitzsche
    Matthias Gutberlet
    Friedrich Wilhelm Mohr
    Lukas Lehmkuhl
    The International Journal of Cardiovascular Imaging, 2015, 31 : 1233 - 1242
  • [42] CT evaluation prior to transapical aortic valve replacement: semi-automatic versus manual image segmentation
    Foldyna, Borek
    Jungert, Camelia
    Luecke, Christian
    von Aspern, Konstantin
    Boehmer-Lasthaus, Sonja
    Rueth, Eva Maria
    Grothoff, Matthias
    Nitzsche, Stefan
    Gutberlet, Matthias
    Mohr, Friedrich Wilhelm
    Lehmkuhl, Lukas
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2015, 31 (06): : 1233 - 1242
  • [43] Semi-automatic detection of faults in 3D seismic data
    Tingdahl, KM
    de Rooij, M
    GEOPHYSICAL PROSPECTING, 2005, 53 (04) : 533 - 542
  • [44] 3D dento-maxillary osteolytic lesion and active contour segmentation pilot study in CBCT; semi-automatic vs manual methods
    Vallaeys, K.
    Kacem, A.
    Legoux, H.
    Le Tenier, M.
    Hamitouche, C.
    Arbab-Chirani, R.
    DENTOMAXILLOFACIAL RADIOLOGY, 2015, 44 (08)
  • [45] Semi-automatic 3D-segmentation of live-3D echocardiographic images
    Boettger, T
    Wolf, I
    Kunert, T
    Mottl-Link, S
    Hastenteufel, M
    De Simone, R
    Meinzer, HP
    COMPUTERS IN CARDIOLOGY 2004, VOL 31, 2004, 31 : 73 - 76
  • [46] APPROACH FOR THE SEMI-AUTOMATIC VERIFICATION OF 3D BUILDING MODELS
    Helmholz, P.
    Belton, D.
    Moncrieff, S.
    ISPRS HANNOVER WORKSHOP 2013, 2013, 40-1 (W-1): : 121 - 126
  • [47] Automatic Ultrasound Image Enhancement for 2D Semi-Automatic Breast-Lesion Segmentation
    Lu, Kongkuo
    Hall, Christopher S.
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
  • [48] Semi-automatic 3D Segmentation Of Costal Cartilage In CT Data From Pectus Excavatum Patients
    Barbosa, Daniel
    Queiros, Sandro
    Rodrigues, Nuno
    Correia-Pinto, Jorge
    Vilaca, J.
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [49] Semi-Automatic Segmentation Methods for 3-D Visualization and Analysis of the Liver
    Selver, M. Alper
    Fischer, Felix
    Gezer, Sinem
    Hillen, Walter
    Dicle, Oguz
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 1133 - 1137
  • [50] 3D CHANGE DETECTION FOR SEMI-AUTOMATIC UPDATE OF BUILDINGS IN 3D CITY MODELS
    Tamort, A.
    Kharroubi, A.
    Hajji, R.
    Billen, R.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 349 - 355