VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks

被引:109
|
作者
Berger, Daniel R. [1 ]
Seung, H. Sebastian [2 ]
Lichtman, Jeff W. [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Comp Sci, Princeton Neurosci Inst, Princeton, NJ 08544 USA
基金
美国国家卫生研究院;
关键词
connectomics; segmentation; visualization; serial section electron microscopy; CLEM; proofreading; TrakEM2; voxel; SCANNING-ELECTRON-MICROSCOPY; DIRECTION-SELECTIVITY; WIRING SPECIFICITY; HIGH-RESOLUTION; CIRCUIT; NETWORK; RECONSTRUCTION; ANATOMY; SYSTEM;
D O I
10.3389/fncir.2018.00088
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent developments in serial-section electron microscopy allow the efficient generation of very large image data sets but analyzing such data poses challenges for software tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely available utility program for generating and editing annotations and segmentations of large volumetric image (voxel) data sets. It provides a simple yet powerful user interface for real-time exploration and analysis of large data sets even in the Petabyte range.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Evaluation of a semi-automatic segmentation algorithm in 3D intraoperative ultrasound brain angiography
    Chalopin, Claire
    Krissian, Karl
    Meixensberger, Juergen
    Muens, Andrea
    Arlt, Felix
    Lindner, Dirk
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58 (03): : 293 - 302
  • [32] Semi-automatic 3D lung nodule segmentation in CT using dynamic programming
    Sargent, Dustin
    Park, Sun Young
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [33] 3D live-wire-based semi-automatic segmentation of medical images
    Hamarneh, G
    Yang, J
    McIntosh, C
    Langille, M
    MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 1597 - 1603
  • [34] Semi-automatic Left Atrial Appendage Segmentation from 3D CCTA Images
    Leventic, Hrvoje
    Babin, Danilo
    Velicki, Lazar
    Galic, Irena
    Zlokolica, Vladimir
    PROCEEDINGS OF 2017 INTERNATIONAL SYMPOSIUM ELMAR, 2017, : 39 - 42
  • [35] One-vs-All Semi-Automatic Labeling Tool for Semantic Segmentation in Autonomous Driving
    Gu, Jing
    Gallego, Guillermo
    Ben Arab, Amine
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 18243 - 18249
  • [36] A semi-automatic 3D reconstruction algorithm for telepresence
    Sarkis, Michel
    Diepold, Klaus
    ADVANCES IN VISUAL COMPUTING, PT 2, 2006, 4292 : 596 - +
  • [37] Development and evaluation of a semi-automatic 3D segmentation technique of the carotid arteries from 3D ultrasound images
    Gill, JD
    Ladak, HM
    Steinman, DA
    Fenster, A
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 214 - 221
  • [38] Semi-Automatic Corpus Callosum Segmentation and 3D Visualization Using Active Contour Methods
    Ciecholewski, Marcin
    Spodnik, Jan H.
    SYMMETRY-BASEL, 2018, 10 (11):
  • [39] Fast and Semi-automatic 3D Modeling and Roaming of Large-scale Terrain
    Shao, Yuanzheng
    Di, Liping
    Guo, Bingxuan
    Cao, Jing
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 685 - +
  • [40] SEMI-AUTOMATIC SEGMENTATION OF PRETERM NEONATE VENTRICLE SYSTEM FROM 3D ULTRASOUND IMAGES
    Qiu, W.
    Yuan, J.
    Kishinwto, J.
    de Ribaupierre, S.
    Ukwatta, E.
    Fenster, A.
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1222 - 1225