On universal partial words

被引:0
|
作者
Chen, Herman Z. Q. [1 ]
Kitaev, Sergey [2 ]
Muetze, Torsten [3 ]
Sun, Brian Y. [4 ]
机构
[1] Tianjin Chengjian Univ, Sch Sci, Tianjin, Peoples R China
[2] Univ Strathclyde, Dept Comp & Informat Sci, Glasgow, Lanark, Scotland
[3] TU Berlin, Inst Math, Berlin, Germany
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE | 2017年 / 19卷 / 01期
基金
美国国家科学基金会;
关键词
universal word; partial word; De Bruijn graph; Eulerian cycle; Hamiltonian cycle; GENERATING NECKLACES; UNAVOIDABLE SETS; SEQUENCES; PATTERNS; COLORS; BEADS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A universal word for a finite alphabet A and some integer n >= 1 is a word over A such that every word in A(n) appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any A and n. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from A may contain an arbitrary number of occurrences of a special 'joker' symbol lozenge is not an element of A, which can be substituted by any symbol from A. For example, u = 0 lozenge 011100 is a linear partial word for the binary alphabet A = {0, 1} and for n = 3 (e.g., the first three letters of u yield the subwords 000 and 010). We present results on the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the number of lozenge s and their positions), including various explicit constructions. We also provide numerous examples of universal partial words that we found with the help of a computer.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Periodicity Algorithms for Partial Words
    Manea, Florin
    Mercas, Robert
    Tiseanu, Catalin
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 472 - 484
  • [42] Periods in Partial Words: An Algorithm
    Blanchet-Sadri, Francine
    Mandel, Travis
    Sisodia, Gautam
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 57 - +
  • [43] On minimal Sturmian partial words
    Blanchet-Sadri, F.
    Lensmire, John
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 733 - 745
  • [44] On Periodicity Lemma for Partial Words
    Kociumaka, Tomasz
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS (LATA 2018), 2018, 10792 : 232 - 244
  • [45] Border Correlations of Partial Words
    F. Blanchet-Sadri
    E. Clader
    O. Simpson
    Theory of Computing Systems, 2010, 47 : 179 - 195
  • [46] Regular languages of partial words
    Dassow, Juergen
    Manea, Florin
    Mercas, Robert
    INFORMATION SCIENCES, 2014, 268 : 290 - 304
  • [47] Constructing partial words with subword complexities not achievable by full words
    Blanchet-Sadri, F.
    Chakarov, Aleksandar
    Manuelli, Lucas
    Schwartz, Jarett
    Stich, Slater
    THEORETICAL COMPUTER SCIENCE, 2012, 432 : 21 - 27
  • [48] Bridge of Words: Esperanto and the Dream of a Universal Language
    Alcalde, Javier
    EUROPEAN JOURNAL OF JEWISH STUDIES, 2017, 11 (02) : 210 - 213
  • [49] A UNIVERSAL PARTIAL RECURSIVE FUNCTION
    POLYAKOV, EA
    MATHEMATICAL NOTES, 1991, 49 (1-2) : 186 - 189
  • [50] The partial compactification of the universal centralizer
    Balibanu, Ana
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (05):