On universal partial words

被引:0
|
作者
Chen, Herman Z. Q. [1 ]
Kitaev, Sergey [2 ]
Muetze, Torsten [3 ]
Sun, Brian Y. [4 ]
机构
[1] Tianjin Chengjian Univ, Sch Sci, Tianjin, Peoples R China
[2] Univ Strathclyde, Dept Comp & Informat Sci, Glasgow, Lanark, Scotland
[3] TU Berlin, Inst Math, Berlin, Germany
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE | 2017年 / 19卷 / 01期
基金
美国国家科学基金会;
关键词
universal word; partial word; De Bruijn graph; Eulerian cycle; Hamiltonian cycle; GENERATING NECKLACES; UNAVOIDABLE SETS; SEQUENCES; PATTERNS; COLORS; BEADS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A universal word for a finite alphabet A and some integer n >= 1 is a word over A such that every word in A(n) appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any A and n. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from A may contain an arbitrary number of occurrences of a special 'joker' symbol lozenge is not an element of A, which can be substituted by any symbol from A. For example, u = 0 lozenge 011100 is a linear partial word for the binary alphabet A = {0, 1} and for n = 3 (e.g., the first three letters of u yield the subwords 000 and 010). We present results on the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the number of lozenge s and their positions), including various explicit constructions. We also provide numerous examples of universal partial words that we found with the help of a computer.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Infinite words and universal free actions
    Kharlampovich, Olga
    Myasnikov, Alexei
    Serbin, Denis
    GROUPS COMPLEXITY CRYPTOLOGY, 2014, 6 (01) : 55 - 69
  • [22] Abelian repetitions in partial words
    Blanchet-Sadri, F.
    Simmons, Sean
    Xu, Dimin
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 194 - 214
  • [23] Border Correlations of Partial Words
    Blanchet-Sadri, F.
    Clader, E.
    Simpson, O.
    THEORY OF COMPUTING SYSTEMS, 2010, 47 (01) : 179 - 195
  • [24] Unavoidable Sets of Partial Words
    Blanchet-Sadri, F.
    Brownstein, N. C.
    Kalcic, Andy
    Palumbo, Justin
    Weyand, T.
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (02) : 381 - 406
  • [25] Squares in Binary Partial Words
    Blanchet-Sadri, Francine
    Jiao, Yang
    Machacek, John M.
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2012), 2012, 7410 : 404 - 415
  • [26] ALGORITHMIC COMBINATORICS ON PARTIAL WORDS
    Blanchet-Sadri, F.
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2012, 23 (06) : 1189 - 1206
  • [27] A Note on Pcodes of Partial Words
    Moriya, Tetsuo
    Kataoka, Itaru
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (01) : 139 - 141
  • [28] Partial words for DNA coding
    Leupold, P
    DNA COMPUTING, 2005, 3384 : 224 - 234
  • [29] Testing primitivity on partial words
    Blanchet-Sadri, F.
    Anavekar, Arundhati R.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 279 - 287
  • [30] Periods in partial words: An algorithm
    Blanchet-Sadri, F.
    Mandel, Travis
    Sisodia, Gautam
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 16 : 113 - 128