On universal partial words

被引:0
|
作者
Chen, Herman Z. Q. [1 ]
Kitaev, Sergey [2 ]
Muetze, Torsten [3 ]
Sun, Brian Y. [4 ]
机构
[1] Tianjin Chengjian Univ, Sch Sci, Tianjin, Peoples R China
[2] Univ Strathclyde, Dept Comp & Informat Sci, Glasgow, Lanark, Scotland
[3] TU Berlin, Inst Math, Berlin, Germany
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE | 2017年 / 19卷 / 01期
基金
美国国家科学基金会;
关键词
universal word; partial word; De Bruijn graph; Eulerian cycle; Hamiltonian cycle; GENERATING NECKLACES; UNAVOIDABLE SETS; SEQUENCES; PATTERNS; COLORS; BEADS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A universal word for a finite alphabet A and some integer n >= 1 is a word over A such that every word in A(n) appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any A and n. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from A may contain an arbitrary number of occurrences of a special 'joker' symbol lozenge is not an element of A, which can be substituted by any symbol from A. For example, u = 0 lozenge 011100 is a linear partial word for the binary alphabet A = {0, 1} and for n = 3 (e.g., the first three letters of u yield the subwords 000 and 010). We present results on the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the number of lozenge s and their positions), including various explicit constructions. We also provide numerous examples of universal partial words that we found with the help of a computer.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Codes, orderings, and partial words
    Blanchet-Sadri, F
    THEORETICAL COMPUTER SCIENCE, 2004, 329 (1-3) : 177 - 202
  • [32] Recurrence in infinite partial words
    Blanchet-Sadri, F.
    Chen, Bob
    Munteanu, Sinziana
    THEORETICAL COMPUTER SCIENCE, 2014, 524 : 41 - 47
  • [33] Periodicity properties on partial words
    Blanchet-Sadri, F.
    Corcoran, Kevin
    Nyberg, Jenell
    INFORMATION AND COMPUTATION, 2008, 206 (9-10) : 1057 - 1064
  • [34] ON THE NUMBER OF SQUARES IN PARTIAL WORDS
    Halava, Vesa
    Harju, Tero
    Karki, Tomi
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2010, 44 (01): : 125 - 138
  • [35] Partial matching of Bangla words
    Jahan, Farhana
    Al Ameen, Mahmudul Faisal
    Abdullah-Al-Mamun, Khondaker
    ICECE 2006: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, 2006, : 189 - +
  • [36] A periodicity lemma for partial words
    Kociumaka, Tomasz
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    INFORMATION AND COMPUTATION, 2022, 283
  • [37] On Minimal Sturmian Partial Words
    Blanchet-Sadri, Francine
    Lensmire, John
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 225 - 236
  • [38] Language of Lyndon Partial Words
    Kumari, R. Krishna
    Arulprakasam, R.
    Dare, V. R.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1173 - 1177
  • [39] Unavoidable Sets of Partial Words
    F. Blanchet-Sadri
    N. C. Brownstein
    Andy Kalcic
    Justin Palumbo
    T. Weyand
    Theory of Computing Systems, 2009, 45 : 381 - 406
  • [40] Squares and primitivity in partial words
    Blanchet-Sadri, F.
    Bodnar, Michelle
    Nikkel, Jordan
    Quigley, J. D.
    Zhang, Xufan
    DISCRETE APPLIED MATHEMATICS, 2015, 185 : 26 - 37