Minimum-volume enclosing ellipsoids and core sets

被引:189
|
作者
Kumar, P [1 ]
Yildirim, EA
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Lowner ellipsoids; core sets; approximation algorithms;
D O I
10.1007/s10957-005-2653-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of computing a ( 1 + epsilon)-approximation to the minimum-volume enclosing ellipsoid of a given point set S = {p(1), p(2),..., p(n)} subset of R-d. Based on a simple, initial volume approximation method, we propose a modi. cation of the Khachiyan first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd(3)/epsilon) operations for epsilon is an element of(0, 1). As a byproduct, our algorithm returns a core set X subset of S with the property that the minimum-volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends on only the dimension d and epsilon, but not on the number of points n. In particular, our results imply that | X| = O(d(2)/epsilon) for epsilon is an element of(0, 1).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Scale-invariant clustering with minimum volume ellipsoids
    Kumar, Mahesh
    Orlin, James B.
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (04) : 1017 - 1029
  • [42] Algorithms to construct a minimum-volume invariant ellipsoid for a stable dynamic system
    Shor, NZ
    Berezovskii, OA
    CYBERNETICS AND SYSTEMS ANALYSIS, 1995, 31 (03) : 421 - 427
  • [43] Uniqueness results for minimal enclosing ellipsoids
    Schroecker, Hans-Peter
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (09) : 756 - 762
  • [44] SMALLEST ENCLOSING DISKS (BALLS AND ELLIPSOIDS)
    WELZL, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 555 : 359 - 370
  • [45] Towards Tuning-Free Minimum-Volume Nonnegative Matrix Factorization
    Nguyen, Duc Toan
    Chi, Eric C.
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 217 - 225
  • [46] Learning minimum volume sets
    Scott, CD
    Nowak, RD
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 665 - 704
  • [47] Effect of implementing hospital level minimum-volume standards for ovarian cancer
    Wright, J. D.
    Huang, Y.
    St Clair, C. M.
    Tergas, A. I.
    Melamed, A.
    Hou, J. Y.
    Collado, F. Khoury
    Hershman, D.
    GYNECOLOGIC ONCOLOGY, 2019, 154 : 199 - 199
  • [48] Dynamics of an axisymmetric liquid bridge close to the minimum-volume stability limit
    Vega, E. J.
    Montanero, M.
    Herrada, M. A.
    Ferrera, C.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [49] MINIMUM-VOLUME, FLOW-THROUGH SYSTEM FOR REARING FROG TADPOLES - AQUARIUM
    SCHMIDT, RS
    HUDSON, WR
    LABORATORY ANIMAL SCIENCE, 1979, 29 (04): : 525 - 527
  • [50] Improved pruning of large data sets for the minimum enclosing ball problem
    Kallberg, Linus
    Larsson, Thomas
    GRAPHICAL MODELS, 2014, 76 : 609 - 619