Minimum-volume enclosing ellipsoids and core sets

被引:189
|
作者
Kumar, P [1 ]
Yildirim, EA
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Lowner ellipsoids; core sets; approximation algorithms;
D O I
10.1007/s10957-005-2653-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of computing a ( 1 + epsilon)-approximation to the minimum-volume enclosing ellipsoid of a given point set S = {p(1), p(2),..., p(n)} subset of R-d. Based on a simple, initial volume approximation method, we propose a modi. cation of the Khachiyan first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd(3)/epsilon) operations for epsilon is an element of(0, 1). As a byproduct, our algorithm returns a core set X subset of S with the property that the minimum-volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends on only the dimension d and epsilon, but not on the number of points n. In particular, our results imply that | X| = O(d(2)/epsilon) for epsilon is an element of(0, 1).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条