Minimum-volume enclosing ellipsoids and core sets

被引:189
|
作者
Kumar, P [1 ]
Yildirim, EA
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Lowner ellipsoids; core sets; approximation algorithms;
D O I
10.1007/s10957-005-2653-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of computing a ( 1 + epsilon)-approximation to the minimum-volume enclosing ellipsoid of a given point set S = {p(1), p(2),..., p(n)} subset of R-d. Based on a simple, initial volume approximation method, we propose a modi. cation of the Khachiyan first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd(3)/epsilon) operations for epsilon is an element of(0, 1). As a byproduct, our algorithm returns a core set X subset of S with the property that the minimum-volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends on only the dimension d and epsilon, but not on the number of points n. In particular, our results imply that | X| = O(d(2)/epsilon) for epsilon is an element of(0, 1).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] MINIMUM-VOLUME DESIGN OF ELASTIC TRUSSES WITH DEFLECTION CONSTRAINTS
    HUANG, NC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1975, 26 (04): : 437 - 452
  • [32] A Minimum Volume Covering Approach with a Set of Ellipsoids
    Martinez-Rego, David
    Castillo, Enrique
    Fontenla-Romero, Oscar
    Alonso-Betanzos, Amparo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (12) : 2997 - 3009
  • [33] Inertial Majorization-Minimization Algorithm for Minimum-Volume NMF
    Thanh, Olivier Vu
    Ang, Andersen
    Gillis, Nicolas
    Le Thi Khanh Hien
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1065 - 1069
  • [34] MINIMUM-VOLUME RANK-DEFICIENT NONNEGATIVE MATRIX FACTORIZATIONS
    Leplat, Valentin
    Ang, Andersen M. S.
    Gillis, Nicolas
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3402 - 3406
  • [35] REMARKS ON MINIMUM-VOLUME DESIGNS OF A 3-BAR TRUSS
    SAVE, MA
    JOURNAL OF STRUCTURAL MECHANICS, 1983, 11 (01): : 101 - 110
  • [36] Minimum-volume regularized ILRMA for blind audio source separation
    Wang, Jianyu
    Guan, Shanzheng
    Zhang, Xiao-Lei
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 630 - 634
  • [37] Enclosing ellipsoids and elliptic cylinders of semialgebraic sets and their application to error bounds in polynomial optimization
    Masakazu Kojima
    Makoto Yamashita
    Mathematical Programming, 2013, 138 : 333 - 364
  • [38] Enclosing ellipsoids and elliptic cylinders of semialgebraic sets and their application to error bounds in polynomial optimization
    Kojima, Masakazu
    Yamashita, Makoto
    MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) : 333 - 364
  • [39] Algorithms for a minimum volume enclosing simplex in three dimensions
    Zhou, YH
    Suri, S
    SIAM JOURNAL ON COMPUTING, 2002, 31 (05) : 1339 - 1357