Minimum-volume enclosing ellipsoids and core sets

被引:189
|
作者
Kumar, P [1 ]
Yildirim, EA
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Lowner ellipsoids; core sets; approximation algorithms;
D O I
10.1007/s10957-005-2653-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of computing a ( 1 + epsilon)-approximation to the minimum-volume enclosing ellipsoid of a given point set S = {p(1), p(2),..., p(n)} subset of R-d. Based on a simple, initial volume approximation method, we propose a modi. cation of the Khachiyan first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd(3)/epsilon) operations for epsilon is an element of(0, 1). As a byproduct, our algorithm returns a core set X subset of S with the property that the minimum-volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends on only the dimension d and epsilon, but not on the number of points n. In particular, our results imply that | X| = O(d(2)/epsilon) for epsilon is an element of(0, 1).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Minimum-Volume Enclosing Ellipsoids and Core Sets
    P. Kumar
    E. A. Yildirim
    Journal of Optimization Theory and Applications, 2005, 126 : 1 - 21
  • [2] Computing minimum-volume enclosing ellipsoids
    Nathaniel Bowman
    Michael T. Heath
    Mathematical Programming Computation, 2023, 15 : 621 - 650
  • [3] Computing minimum-volume enclosing ellipsoids
    Bowman, Nathaniel
    Heath, Michael T.
    MATHEMATICAL PROGRAMMING COMPUTATION, 2023, 15 (04) : 621 - 650
  • [4] Computing minimum-volume enclosing ellipsoids for large datasets
    Rosa, Samuel
    Harman, Radoslav
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [5] Computing minimum-volume enclosing axis-aligned ellipsoids
    Kumar, P.
    Yildirim, E. A.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 136 (02) : 211 - 228
  • [6] On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids
    Todd, Michael J.
    Yildirim, E. Alper
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (13) : 1731 - 1744
  • [7] Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids
    P. Kumar
    E. A. Yıldırım
    Journal of Optimization Theory and Applications, 2008, 136 : 211 - 228
  • [8] Computation of minimum-volume covering ellipsoids
    Sun, P
    Freund, RM
    OPERATIONS RESEARCH, 2004, 52 (05) : 690 - 706
  • [9] Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids
    Ahipasaoglu, S. Damla
    Sun, Peng
    Todd, Michael J.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (01): : 5 - 19
  • [10] MINIMUM-VOLUME ELLIPSOIDS CONTAINING COMPACT-SETS - APPLICATION TO PARAMETER BOUNDING
    PRONZATO, L
    WALTER, E
    AUTOMATICA, 1994, 30 (11) : 1731 - 1739