Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing

被引:13
|
作者
Wang, Zhuqing [1 ]
Ma, Qiqi [1 ]
Guo, Yangming [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
关键词
lithium-ion batteries (LIBs); remaining useful life (RUL); soft sensing; gated recurrent unit neural network (GRU NN); SHORT-TERM-MEMORY; HEALTH; STATE; OPTIMIZATION; PROGNOSTICS; MODEL;
D O I
10.3390/act10090234
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Remaining useful life (RUL) prediction is of great concern for the reliability and safety of lithium-ion batteries in electric vehicles (EVs), but the prediction precision is still unsatisfactory due to the unreliable measurement and fluctuation of data. Aiming to solve these issues, an adaptive sliding window-based gated recurrent unit neural network (GRU NN) is constructed in this paper to achieve the precise RUL prediction of LIBs with the soft sensing method. To evaluate the battery degradation performance, an indirect health indicator (HI), i.e., the constant current duration (CCD), is firstly extracted from charge voltage data, providing a reliable soft measurement of battery capacity. Then, a GRU NN with an adaptive sliding window is designed to learn the long-term dependencies and simultaneously fit the local regenerations and fluctuations. Employing the inherent memory units and gate mechanism of a GRU, the designed model can learn the long-term dependencies of HIs to the utmost with low computation cost. Furthermore, since the length of the sliding window updates timely according to the variation of HIs, the model can also capture the local tendency of HIs and address the influence of local regeneration. The effectiveness and advantages of the integrated prediction methodology are validated via experiments and comparison, and a more precise RUL prediction result is provided as well.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [42] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU
    Ding, Guorong
    Wang, Wenbo
    Zhu, Ting
    IEEE ACCESS, 2022, 10 : 89402 - 89413
  • [43] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [44] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [45] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [46] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [47] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [48] Remaining useful life prediction for lithium-ion batteries based on an improved GWO–SVR algorithm
    Jin H.
    Hu Y.
    Ge H.
    Hao Z.
    Zeng Z.
    Tang Z.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 514 - 524
  • [49] Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries
    Liu, Zhenbao
    Sun, Gaoyuan
    Bu, Shuhui
    Han, Junwei
    Tang, Xiaojun
    Pecht, Michael
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (02) : 280 - 293
  • [50] Remaining Useful Life Prediction of Lithium-ion Batteries Using Multiple Kernel Extreme Learning Machine
    Liu R.
    Recent Advances in Computer Science and Communications, 2022, 15 (05) : 715 - 721