Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing

被引:13
|
作者
Wang, Zhuqing [1 ]
Ma, Qiqi [1 ]
Guo, Yangming [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
关键词
lithium-ion batteries (LIBs); remaining useful life (RUL); soft sensing; gated recurrent unit neural network (GRU NN); SHORT-TERM-MEMORY; HEALTH; STATE; OPTIMIZATION; PROGNOSTICS; MODEL;
D O I
10.3390/act10090234
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Remaining useful life (RUL) prediction is of great concern for the reliability and safety of lithium-ion batteries in electric vehicles (EVs), but the prediction precision is still unsatisfactory due to the unreliable measurement and fluctuation of data. Aiming to solve these issues, an adaptive sliding window-based gated recurrent unit neural network (GRU NN) is constructed in this paper to achieve the precise RUL prediction of LIBs with the soft sensing method. To evaluate the battery degradation performance, an indirect health indicator (HI), i.e., the constant current duration (CCD), is firstly extracted from charge voltage data, providing a reliable soft measurement of battery capacity. Then, a GRU NN with an adaptive sliding window is designed to learn the long-term dependencies and simultaneously fit the local regenerations and fluctuations. Employing the inherent memory units and gate mechanism of a GRU, the designed model can learn the long-term dependencies of HIs to the utmost with low computation cost. Furthermore, since the length of the sliding window updates timely according to the variation of HIs, the model can also capture the local tendency of HIs and address the influence of local regeneration. The effectiveness and advantages of the integrated prediction methodology are validated via experiments and comparison, and a more precise RUL prediction result is provided as well.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] Towards enhanced remaining useful life prediction of lithium-ion batteries with uncertainty using optimized deep learning algorithm
    Reza, M. S.
    Hannan, M. A.
    Mansor, M.
    Ker, Pin Jern
    Rahman, S. A.
    Jang, Gilsoo
    Mahlia, T. M. Indra
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [32] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [33] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [34] An interpretable online prediction method for remaining useful life of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Ye, Yifu
    Cai, Zhiduan
    Zhen, Aigang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Support Vector Regression
    Xu J.
    Ni Y.
    Zhu C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (17): : 3693 - 3704
  • [36] Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer
    Zhou, Kaile
    Zhang, Zhiyue
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [37] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
    Tang, Shengjin
    Yu, Chuanqiang
    Wang, Xue
    Guo, Xiaosong
    Si, Xiaosheng
    ENERGIES, 2014, 7 (02): : 520 - 547
  • [38] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
    Wu, Weili
    Lu, Shuangshuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [39] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [40] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
    Zhang, Lijun
    Mu, Zhongqiang
    Sun, Changyan
    IEEE ACCESS, 2018, 6 : 17729 - 17740