Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing

被引:13
|
作者
Wang, Zhuqing [1 ]
Ma, Qiqi [1 ]
Guo, Yangming [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
关键词
lithium-ion batteries (LIBs); remaining useful life (RUL); soft sensing; gated recurrent unit neural network (GRU NN); SHORT-TERM-MEMORY; HEALTH; STATE; OPTIMIZATION; PROGNOSTICS; MODEL;
D O I
10.3390/act10090234
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Remaining useful life (RUL) prediction is of great concern for the reliability and safety of lithium-ion batteries in electric vehicles (EVs), but the prediction precision is still unsatisfactory due to the unreliable measurement and fluctuation of data. Aiming to solve these issues, an adaptive sliding window-based gated recurrent unit neural network (GRU NN) is constructed in this paper to achieve the precise RUL prediction of LIBs with the soft sensing method. To evaluate the battery degradation performance, an indirect health indicator (HI), i.e., the constant current duration (CCD), is firstly extracted from charge voltage data, providing a reliable soft measurement of battery capacity. Then, a GRU NN with an adaptive sliding window is designed to learn the long-term dependencies and simultaneously fit the local regenerations and fluctuations. Employing the inherent memory units and gate mechanism of a GRU, the designed model can learn the long-term dependencies of HIs to the utmost with low computation cost. Furthermore, since the length of the sliding window updates timely according to the variation of HIs, the model can also capture the local tendency of HIs and address the influence of local regeneration. The effectiveness and advantages of the integrated prediction methodology are validated via experiments and comparison, and a more precise RUL prediction result is provided as well.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR
    He B.
    Yang X.
    Wang J.
    Zhu X.
    Hu Z.
    Liu Q.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 484 - 491
  • [22] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    Energy, 2021, 234
  • [23] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)
  • [24] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [25] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
    Li, Lingling
    Wang, Pengchong
    Chao, Kuei-Hsiang
    Zhou, Yatong
    Xie, Yang
    PLOS ONE, 2016, 11 (09):
  • [26] Prediction of the Remaining Useful Life of Lithium-Ion Batteries Based on Empirical Mode Decomposition and Deep Neural Networks
    Qiao, Jianshu
    Liu, Xiaofeng
    Chen, Zehua
    IEEE ACCESS, 2020, 8 : 42760 - 42767
  • [27] Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic of Lithium-Ion Batteries
    Tiane, Anas
    Okar, Chafik
    Alzayed, Mohamad
    Chaoui, Hicham
    IEEE Access, 2024, 12 : 70334 - 70344
  • [28] Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic of Lithium-Ion Batteries
    Tiane, Anas
    Okar, Chafik
    Alzayed, Mohamad
    Chaoui, Hicham
    IEEE ACCESS, 2024, 12 : 70334 - 70344
  • [29] A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries
    Sharma, Prabhakar
    Bora, Bhaskor J. J.
    BATTERIES-BASEL, 2023, 9 (01):
  • [30] Equivalent circuit simulated deep network architecture and transfer learning for remaining useful life prediction of lithium-ion batteries
    Nguyen, Cong Dai
    Bae, Suk Joo
    JOURNAL OF ENERGY STORAGE, 2023, 71