The evidence framework applied to sparse kernel logistic regression

被引:7
|
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Bayesian learning; kernel methods; logistic regression;
D O I
10.1016/j.neucom.2004.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel-induced feature space also corresponds to a spherical Gaussian prior over the transformed parameters, permitting the straight-forward derivation of an efficient update formula for the regularisation parameter. The Bayesian framework also allows the selection of good values for kernel parameters through maximisation of the marginal likelihood, or evidence, for the model. Results obtained on a variety of benchmark data sets are provided indicating that the Bayesian KLR model is competitive with KLR models, where the hyper-parameters are selected via cross-validation and with the support vector machine and relevance vector machine. (c) 2004 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [41] Logistic regression with sparse common and distinctive covariates
    Park, S.
    Ceulemans, E.
    Van Deun, K.
    BEHAVIOR RESEARCH METHODS, 2023, 55 (08) : 4143 - 4174
  • [42] A kernel regression framework for SMT
    Wang, Zhuoran
    Shawe-Taylor, John
    MACHINE TRANSLATION, 2010, 24 (02) : 87 - 102
  • [43] Sparse Inverse Kernel Gaussian Process Regression
    Das, Kamalika
    Srivastava, Ashok N.
    STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (03) : 205 - 220
  • [44] Sparse kernel partial least squares regression
    Momma, M
    Bennett, KP
    LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 216 - 230
  • [45] Sparse Kernel Regression for Traffic Flow Forecasting
    Huang, Rongqing
    Sun, Shiliang
    Liu, Yan
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT II, 2011, 6676 : 76 - 84
  • [46] Sparse Kernel Machine Regression for Ordinal Outcomes
    Shen, Yuanyuan
    Liao, Katherine P.
    Cai, Tianxi
    BIOMETRICS, 2015, 71 (01) : 63 - 70
  • [47] Kernel logistic regression using truncated Newton method
    Maalouf, Maher
    Trafalis, Theodore B.
    Adrianto, Indra
    COMPUTATIONAL MANAGEMENT SCIENCE, 2011, 8 (04) : 415 - 428
  • [48] Face Recognition Based on Adaptive Kernel Logistic Regression
    Wang, Ziqiang
    Sun, Xia
    ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 2, 2012, 160 : 257 - 262
  • [49] Predicting β-Turns in Protein Using Kernel Logistic Regression
    Elbashir, Murtada Khalafallah
    Sheng, Yu
    Wang, Jianxin
    Wu, FangXiang
    Li, Min
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [50] Quantum kernel logistic regression based Newton method
    Ning, Tong
    Yang, Youlong
    Du, Zhenye
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 611