Kernel logistic regression using truncated Newton method

被引:20
|
作者
Maalouf, Maher [1 ]
Trafalis, Theodore B. [1 ]
Adrianto, Indra [1 ]
机构
[1] Univ Oklahoma, Sch Ind Engn, 202 WestBoyd,Room 124, Norman, OK 73019 USA
关键词
Classification; Logistic regression; Kernel methods; Truncated Newton method;
D O I
10.1007/s10287-010-0128-1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Kernel logistic regression (KLR) is a powerful nonlinear classifier. The combination of KLR and the truncated-regularized iteratively re-weighted least-squares (TR-IRLS) algorithm, has led to a powerful classification method using small-to-medium size data sets. This method (algorithm), is called truncated-regularized kernel logistic regression (TR-KLR). Compared to support vector machines (SVM) and TR-IRLS on twelve benchmark publicly available data sets, the proposed TR-KLR algorithm is as accurate as, and much faster than, SVM and more accurate than TR-IRLS. The TR-KLR algorithm also has the advantage of providing direct prediction probabilities.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [1] Kernel ridge regression using truncated newton method
    Maalouf, Maher
    Homouz, Dirar
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 71 : 339 - 344
  • [2] Logistic regression methods with truncated newton method
    Rahayu, Santi Puteri
    Zain, Jasni Mohamad
    Embong, Abdullah
    Juwari
    Purnami, Santi Wulan
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES SCIENCE AND CONTEMPORARY ENGINEERING 2012, 2012, 50 : 827 - 836
  • [3] Quantum kernel logistic regression based Newton method
    Ning, Tong
    Yang, Youlong
    Du, Zhenye
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 611
  • [4] Texture classification using kernel logistic regression
    Tambo, Asongu L.
    Mistry, Rajan B.
    Campbell, Jonathan M.
    Chan, Sherwin R.
    Hang, Xiyi
    [J]. INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS AND APPLICATIONS/INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2007, : 259 - 262
  • [5] TRUNCATED LOGISTIC-REGRESSION
    ONEILL, TJ
    BARRY, SC
    [J]. BIOMETRICS, 1995, 51 (02) : 533 - 541
  • [6] Predicting β-Turns in Protein Using Kernel Logistic Regression
    Elbashir, Murtada Khalafallah
    Sheng, Yu
    Wang, Jianxin
    Wu, FangXiang
    Li, Min
    [J]. BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [7] Indefinite Kernel Logistic Regression
    Liu, Fanghui
    Huang, Xiaolin
    Yang, Jie
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 846 - 853
  • [8] Greedy Projected Gradient-Newton Method for Sparse Logistic Regression
    Wang, Rui
    Xiu, Naihua
    Zhang, Chao
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) : 527 - 538
  • [9] Trust region Newton method for large-scale logistic regression
    Lin, Chih-Jen
    Weng, Ruby C.
    Keerthi, S. Sathiya
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 627 - 650
  • [10] CLASSIFICATION MODEL FOR TYPE OF STROKE USING KERNEL LOGISTIC REGRESSION
    Annas, Suwardi
    Poerwanto, Bobby
    Aswi
    Abdy, Muhammad
    Fa'rifah, Riska Yanu
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,