Kernel ridge regression using truncated newton method

被引:23
|
作者
Maalouf, Maher [1 ]
Homouz, Dirar [1 ]
机构
[1] Khalifa Univ, Abu Dhabi, U Arab Emirates
关键词
Regression; Least-squares; Kernel ridge regression; Kernel methods; Truncated Newton;
D O I
10.1016/j.knosys.2014.08.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Ridge Regression (KRR) is a powerful nonlinear regression method. The combination of KRR and the truncated-regularized Newton method, which is based on the conjugate gradient (CG) method, leads to a powerful regression method. The proposed method (algorithm), is called Truncated-Regularized Kernel Ridge Regression (TR-KRR). Compared to the closed-form solution of KRR, Support Vector Machines (SVM) and Least-Squares Support Vector Machines (LS-SVM) algorithms on six data sets, the proposed TR-KRR algorithm is as accurate as, and much faster than all of the other algorithms. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:339 / 344
页数:6
相关论文
共 50 条
  • [1] Kernel logistic regression using truncated Newton method
    Maalouf, Maher
    Trafalis, Theodore B.
    Adrianto, Indra
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2011, 8 (04) : 415 - 428
  • [2] Target alignment in truncated kernel ridge regression
    Amini, Arash A.
    Baumgartner, Richard
    Feng, Dai
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] Truncated Newton Kernel Ridge Regression for Prediction of Porosity in Additive Manufactured SS316L
    Abdulla, Hind
    Maalouf, Maher
    Barsoum, Imad
    An, Heungjo
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [4] Logistic regression methods with truncated newton method
    Rahayu, Santi Puteri
    Zain, Jasni Mohamad
    Embong, Abdullah
    Juwari
    Purnami, Santi Wulan
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES SCIENCE AND CONTEMPORARY ENGINEERING 2012, 2012, 50 : 827 - 836
  • [5] Spectrally-truncated kernel ridge regression and its free lunch
    Amini, Arash A.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 3743 - 3761
  • [6] Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration
    Jun, Kwang-Sung
    Cutkosky, Ashok
    Orabona, Francesco
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Face recognition using kernel ridge regression
    An, Senjian
    Liu, Wanquan
    Venkatesh, Svetha
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1033 - +
  • [8] Quantum kernel logistic regression based Newton method
    Ning, Tong
    Yang, Youlong
    Du, Zhenye
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 611
  • [9] MEDICAL IMAGE DENOISING USING KERNEL RIDGE REGRESSION
    Dinh Hoan Trinh
    Luong, Marie
    Rocchisani, Jean-Marie
    Canh Duong Pham
    Dibos, Francoise
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1597 - 1600
  • [10] Automatic Text Summarization using Kernel Ridge Regression
    Onita, Daniela
    Cucu, Ciprian
    [J]. 2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 202 - 209