Kernel ridge regression using truncated newton method

被引:23
|
作者
Maalouf, Maher [1 ]
Homouz, Dirar [1 ]
机构
[1] Khalifa Univ, Abu Dhabi, U Arab Emirates
关键词
Regression; Least-squares; Kernel ridge regression; Kernel methods; Truncated Newton;
D O I
10.1016/j.knosys.2014.08.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Ridge Regression (KRR) is a powerful nonlinear regression method. The combination of KRR and the truncated-regularized Newton method, which is based on the conjugate gradient (CG) method, leads to a powerful regression method. The proposed method (algorithm), is called Truncated-Regularized Kernel Ridge Regression (TR-KRR). Compared to the closed-form solution of KRR, Support Vector Machines (SVM) and Least-Squares Support Vector Machines (LS-SVM) algorithms on six data sets, the proposed TR-KRR algorithm is as accurate as, and much faster than all of the other algorithms. (C) 2014 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:339 / 344
页数:6
相关论文
共 50 条
  • [21] Nonlinear forecasting with many predictors using kernel ridge regression
    Exterkate, Peter
    Groenen, Patrick J. F.
    Heij, Christiaan
    van Dijk, Dick
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 736 - 753
  • [22] Statistical Inference on Panel Data Models: A Kernel Ridge Regression Method
    Zhao, Shunan
    Liu, Ruiqi
    Shang, Zuofeng
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (01) : 325 - 337
  • [23] Mathematical interpretations of kernel ridge regression
    Tanaka, Akira
    Imai, Hideyuki
    Kudo, Mineichi
    Miyakoshi, Masaaki
    COMPUTING ANTICIPATORY SYSTEMS, 2006, 839 : 347 - +
  • [24] Fuzzy kernel ridge regression for classification
    Choi, YoungSik
    Noh, JiSung
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 588 - +
  • [25] Distributed kernel ridge regression with communications
    Lin, Shao-Bo
    Wang, Di
    Zhou, Ding-Xuan
    Journal of Machine Learning Research, 2020, 21
  • [26] Distributed Kernel Ridge Regression with Communications
    Lin, Shao-Bo
    Wang, Di
    Zhou, Ding-Xuan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [27] Reduced Rank Kernel Ridge Regression
    Gavin C. Cawley
    Nicola L. C. Talbot
    Neural Processing Letters, 2002, 16 : 293 - 302
  • [28] Model selection in kernel ridge regression
    Exterkate, Peter
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 1 - 16
  • [29] Reduced rank kernel ridge regression
    Cawley, GC
    Talbot, NLC
    NEURAL PROCESSING LETTERS, 2002, 16 (03) : 293 - 302
  • [30] Tensor-based filter design using kernel ridge regression
    Bauckhage, Christian
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1741 - 1744