The evidence framework applied to sparse kernel logistic regression

被引:7
|
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Bayesian learning; kernel methods; logistic regression;
D O I
10.1016/j.neucom.2004.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel-induced feature space also corresponds to a spherical Gaussian prior over the transformed parameters, permitting the straight-forward derivation of an efficient update formula for the regularisation parameter. The Bayesian framework also allows the selection of good values for kernel parameters through maximisation of the marginal likelihood, or evidence, for the model. Results obtained on a variety of benchmark data sets are provided indicating that the Bayesian KLR model is competitive with KLR models, where the hyper-parameters are selected via cross-validation and with the support vector machine and relevance vector machine. (c) 2004 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [31] A Safe Screening Rule for Sparse Logistic Regression
    Wang, Jie
    Zhou, Jiayu
    Liu, Jun
    Wonka, Peter
    Ye, Jieping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [32] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    TEST, 2022, 31 : 563 - 594
  • [33] Penalized robust estimators in sparse logistic regression
    Bianco, Ana M.
    Boente, Graciela
    Chebi, Gonzalo
    TEST, 2022, 31 (03) : 563 - 594
  • [34] Leukemia Prediction Using Sparse Logistic Regression
    Manninen, Tapio
    Huttunen, Heikki
    Ruusuvuori, Pekka
    Nykter, Matti
    PLOS ONE, 2013, 8 (08):
  • [35] Approximate Sparse Multinomial Logistic Regression for Classification
    Kayabol, Koray
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 490 - 493
  • [36] Logistic Regression Under Sparse Data Conditions
    Walker, David A.
    Smith, Thomas J.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (02)
  • [37] Logistic regression with sparse common and distinctive covariates
    S. Park
    E. Ceulemans
    K. Van Deun
    Behavior Research Methods, 2023, 55 : 4143 - 4174
  • [38] Multiclass Classification by Sparse Multinomial Logistic Regression
    Abramovich, Felix
    Grinshtein, Vadim
    Levy, Tomer
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) : 4637 - 4646
  • [39] Stochastic DCA for Sparse Multiclass Logistic Regression
    Hoai An Le Thi
    Hoai Minh Le
    Duy Nhat Phan
    Bach Tran
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING, ICCSAMA 2017, 2018, 629 : 1 - 12
  • [40] Distributed Parallel Sparse Multinomial Logistic Regression
    Lei, Dajiang
    Du, Meng
    Chen, Hao
    Li, Zhixing
    Wu, Yu
    IEEE ACCESS, 2019, 7 : 55496 - 55508