On the Lipschitzian property in linear complementarity problems over symmetric cones

被引:6
|
作者
Jeyaraman, I. [1 ]
Vetrivel, V. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Euclidean Jordan algebra; Symmetric cone; Complementarity problem; Lipschitzian property; Relaxation transformation; EUCLIDEAN-JORDAN ALGEBRAS; PRINCIPAL MINOR PROPERTY; P-PROPERTIES; SOLUTION MAP; TRANSFORMATIONS; CONTINUITY;
D O I
10.1016/j.laa.2011.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a Euclidean Jordan algebra with symmetric cone K. We show that if a linear transformation L on V has the Lipschitzian property and the linear complementarity problem LCP(L, q) over K has a solution for every invertible q is an element of V. then < L(c), c > > 0 for all primitive idempotents c in V. We show that the converse holds for Lyapunov-like transformations, Stein transformations and quadratic representations. We also show that the Lipschitzian Q-property of the relaxation transformation R(A) on V implies that A is a P-matrix. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 851
页数:10
相关论文
共 50 条
  • [1] On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones
    Asadi, S.
    Mansouri, H.
    Darvay, Zs.
    Zangiabadi, M.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02): : 233 - 257
  • [2] An Infeasible Interior Point Method for Linear Complementarity Problems over Symmetric Cones
    Potra, Florian A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1403 - 1406
  • [3] Smoothing algorithms for complementarity problems over symmetric cones
    Zheng-Hai Huang
    Tie Ni
    Computational Optimization and Applications, 2010, 45 : 557 - 579
  • [4] Smoothing algorithms for complementarity problems over symmetric cones
    Huang, Zheng-Hai
    Ni, Tie
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (03) : 557 - 579
  • [5] Some global uniqueness and solvability results for linear complementarity problems over symmetric cones
    Gowda, M. Seetharama
    Sznajder, R.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) : 461 - 481
  • [6] A CONTINUATION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS OVER SYMMETRIC CONES
    Chua, Chek Beng
    Yi, Peng
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2560 - 2583
  • [7] HOMOGENEOUS ALGORITHMS FOR MONOTONE COMPLEMENTARITY PROBLEMS OVER SYMMETRIC CONES
    Yoshise, Akiko
    PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (02): : 313 - 337
  • [8] Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results
    Julio López
    Rúben López
    Héctor C. Ramírez
    Journal of Optimization Theory and Applications, 2013, 159 : 741 - 768
  • [9] Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results
    Lopez, Julio
    Lopez, Ruben
    Ramirez, Hector C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (03) : 741 - 768
  • [10] SOME NEW RESULTS FOR LINEAR COMPLEMENTARITY PROBLEMS ON PROPER AND SYMMETRIC CONES
    Balaji, R.
    Palpandi, K.
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 165 - 183