On the Lipschitzian property in linear complementarity problems over symmetric cones

被引:6
|
作者
Jeyaraman, I. [1 ]
Vetrivel, V. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Euclidean Jordan algebra; Symmetric cone; Complementarity problem; Lipschitzian property; Relaxation transformation; EUCLIDEAN-JORDAN ALGEBRAS; PRINCIPAL MINOR PROPERTY; P-PROPERTIES; SOLUTION MAP; TRANSFORMATIONS; CONTINUITY;
D O I
10.1016/j.laa.2011.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a Euclidean Jordan algebra with symmetric cone K. We show that if a linear transformation L on V has the Lipschitzian property and the linear complementarity problem LCP(L, q) over K has a solution for every invertible q is an element of V. then < L(c), c > > 0 for all primitive idempotents c in V. We show that the converse holds for Lyapunov-like transformations, Stein transformations and quadratic representations. We also show that the Lipschitzian Q-property of the relaxation transformation R(A) on V implies that A is a P-matrix. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 851
页数:10
相关论文
共 50 条
  • [21] Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (07) : 1431 - 1442
  • [22] Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
    Yuan Min LI
    Xing Tao WANG
    De Yun WEI
    Acta Mathematica Sinica, 2012, 28 (07) : 1431 - 1442
  • [23] Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
    Yuan Min LI
    Xing Tao WANG
    De Yun WEI
    Acta Mathematica Sinica,English Series, 2012, (07) : 1431 - 1442
  • [24] Complementarity properties of the Lyapunov transformation over symmetric cones
    Yuan Min Li
    Xing Tao Wang
    De Yun Wei
    Acta Mathematica Sinica, English Series, 2012, 28 : 1431 - 1442
  • [25] A Lipschitzian error bound for monotone symmetric cone linear complementarity problem
    Baes, Michel
    Lin, Huiling
    OPTIMIZATION, 2015, 64 (11) : 2395 - 2416
  • [26] Large-Neighborhood Infeasible Predictor–Corrector Algorithm for Horizontal Linear Complementarity Problems over Cartesian Product of Symmetric Cones
    Soodabeh Asadi
    Hossein Mansouri
    Zsolt Darvay
    Maryam Zangiabadi
    Nezam Mahdavi-Amiri
    Journal of Optimization Theory and Applications, 2019, 180 : 811 - 829
  • [27] Interior-point methods for Cartesian P*(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions
    Lesaja, G.
    Wang, G. Q.
    Zhu, D. T.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5): : 827 - 843
  • [28] Iterative complexities of a class of homogeneous algorithms for monotone nonlinear complementarity problems over symmetric cones
    Zhao, Huali
    Liu, Hongwei
    OPTIMIZATION, 2018, 67 (09) : 1505 - 1521
  • [29] A new class of smoothing complementarity functions over symmetric cones
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3299 - 3305
  • [30] Linear Complementarity Problems on Extended Second Order Cones
    Nemeth, Sandor Zoltan
    Xiao, Lianghai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (02) : 269 - 288