On the Lipschitzian property in linear complementarity problems over symmetric cones

被引:6
|
作者
Jeyaraman, I. [1 ]
Vetrivel, V. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Euclidean Jordan algebra; Symmetric cone; Complementarity problem; Lipschitzian property; Relaxation transformation; EUCLIDEAN-JORDAN ALGEBRAS; PRINCIPAL MINOR PROPERTY; P-PROPERTIES; SOLUTION MAP; TRANSFORMATIONS; CONTINUITY;
D O I
10.1016/j.laa.2011.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a Euclidean Jordan algebra with symmetric cone K. We show that if a linear transformation L on V has the Lipschitzian property and the linear complementarity problem LCP(L, q) over K has a solution for every invertible q is an element of V. then < L(c), c > > 0 for all primitive idempotents c in V. We show that the converse holds for Lyapunov-like transformations, Stein transformations and quadratic representations. We also show that the Lipschitzian Q-property of the relaxation transformation R(A) on V implies that A is a P-matrix. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 851
页数:10
相关论文
共 50 条