Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results

被引:0
|
作者
Julio López
Rúben López
Héctor C. Ramírez
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
[2] Universidad Católica de la Santísima Concepción,Departamento de Matemática y Física Aplicadas
[3] Universidad de Chile,Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (CNRS UMI 2807), FCFM
关键词
Euclidean Jordan algebra; Linear complementarity problem; Symmetric cone; -transformation; -transformation; García’s transformation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the symmetric cone linear complementarity problem (SCLCP). Specifically, our aim is to characterize the class of linear transformations for which the SCLCP has always a nonempty and bounded solution set in terms of larger classes. For this, we introduce a couple of new classes of linear transformations in this SCLCP context. Then, we study them for concrete particular instances (such as second-order and semidefinite linear complementarity problems) and for specific examples (Lyapunov, Stein functions, among others). This naturally permits to establish coercive and noncoercive existence results for SCLCPs.
引用
收藏
页码:741 / 768
页数:27
相关论文
共 50 条