Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results

被引:0
|
作者
Julio López
Rúben López
Héctor C. Ramírez
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
[2] Universidad Católica de la Santísima Concepción,Departamento de Matemática y Física Aplicadas
[3] Universidad de Chile,Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (CNRS UMI 2807), FCFM
关键词
Euclidean Jordan algebra; Linear complementarity problem; Symmetric cone; -transformation; -transformation; García’s transformation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the symmetric cone linear complementarity problem (SCLCP). Specifically, our aim is to characterize the class of linear transformations for which the SCLCP has always a nonempty and bounded solution set in terms of larger classes. For this, we introduce a couple of new classes of linear transformations in this SCLCP context. Then, we study them for concrete particular instances (such as second-order and semidefinite linear complementarity problems) and for specific examples (Lyapunov, Stein functions, among others). This naturally permits to establish coercive and noncoercive existence results for SCLCPs.
引用
收藏
页码:741 / 768
页数:27
相关论文
共 50 条
  • [21] Kernel-Based Interior-Point Methods for Cartesian P*(κ)-Linear Complementarity Problems over Symmetric Cones
    Lesaja, G.
    CROATIAN OPERATIONAL RESEARCH REVIEW (CRORR), VOL 2, 2011, 2 : 23 - 32
  • [22] Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones
    Yoshise, Akiko
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (04) : 1129 - 1153
  • [23] Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (07) : 1431 - 1442
  • [24] Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
    Yuan Min LI
    Xing Tao WANG
    De Yun WEI
    Acta Mathematica Sinica, 2012, 28 (07) : 1431 - 1442
  • [25] Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
    Yuan Min LI
    Xing Tao WANG
    De Yun WEI
    Acta Mathematica Sinica,English Series, 2012, (07) : 1431 - 1442
  • [26] Complementarity properties of the Lyapunov transformation over symmetric cones
    Yuan Min Li
    Xing Tao Wang
    De Yun Wei
    Acta Mathematica Sinica, English Series, 2012, 28 : 1431 - 1442
  • [27] Large-Neighborhood Infeasible Predictor–Corrector Algorithm for Horizontal Linear Complementarity Problems over Cartesian Product of Symmetric Cones
    Soodabeh Asadi
    Hossein Mansouri
    Zsolt Darvay
    Maryam Zangiabadi
    Nezam Mahdavi-Amiri
    Journal of Optimization Theory and Applications, 2019, 180 : 811 - 829
  • [28] Interior-point methods for Cartesian P*(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions
    Lesaja, G.
    Wang, G. Q.
    Zhu, D. T.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5): : 827 - 843
  • [29] Iterative complexities of a class of homogeneous algorithms for monotone nonlinear complementarity problems over symmetric cones
    Zhao, Huali
    Liu, Hongwei
    OPTIMIZATION, 2018, 67 (09) : 1505 - 1521
  • [30] A new class of smoothing complementarity functions over symmetric cones
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3299 - 3305