Validation of Neural Network software by using IXPE ground calibration data

被引:0
|
作者
Di Marco, Alessandro [1 ]
Tennant, Allyn F. [2 ]
La Monaca, Fabio [1 ]
Muleri, Fabio [1 ]
Rankin, John [1 ]
Rushing, John [3 ]
Soffitta, Paolo [1 ]
Baglioni, Giancarlo [4 ]
Baldini, Luca [5 ]
Costa, Enrico [1 ]
Dietz, Kurtis [2 ]
Fabiani, Sergio [1 ]
Latorre, Vittorio [1 ]
Locatelli, Ugo [4 ]
Manfreda, Alberto [5 ]
O'Dell, Stephen L. [2 ]
Peirson, Lawrence [6 ,7 ]
Weisskopf, Martin C. [2 ]
机构
[1] Ist Nazl Astrofis IAPS, Via Fosso Cavalliere 100, I-00133 Rome, Italy
[2] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[3] Univ Alabama, Informat Technol & Syst Ctr, Huntsville, AL 35899 USA
[4] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[6] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[7] Stanford Univ, Kavli Inst Particle Astrophys & Cosmo, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
IXPE; X-rays; polarimetry; Neural networks; Machine Learning; GPD; X-RAY POLARIMETER; POLARIZATION;
D O I
10.1117/12.2628976
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Imaging X-ray Polarimetry Explorer (IXPE), launched 2021 December 9, will enable meaningful x-ray polarimetry of several types of astronomical sources. Aiming to improve the polarimetric sensitivity of Gas Pixel Detectors, track-reconstruction algorithms based upon machine learning have been proposed in the literature. In particular, a neural-network approach recently developed at Stanford University seems very promising. Here, we describe results obtained using this neural-network approach to analyze IXPE ground calibration data; we then compare those results with results obtained using the current moments-based analysis approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] SOFTWARE EFFORT ESTIMATION USING A NEURAL NETWORK ENSEMBLE
    Pai, Dinesh R.
    McFall, Kevin S.
    Subramanian, Girish H.
    JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2013, 53 (04) : 49 - 58
  • [42] Software ageing prediction using neural network with ridge
    Yan, Yongquan
    IET SOFTWARE, 2020, 14 (05) : 517 - 524
  • [43] Performance Prediction of Software Defined Network Using an Artificial Neural Network
    Sabbeh, Ann
    Al-Raweshidy, H. S.
    Al-Dunainawi, Yousif
    Abbod, Maysam F.
    PROCEEDINGS OF THE 2016 SAI COMPUTING CONFERENCE (SAI), 2016, : 80 - 84
  • [44] On ground Italian volcanic area spectral characterization for the calibration/validation of remote sensing data
    Amici, S.
    Merucci, L.
    Pugnaghi, S.
    Corradini, S.
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES X, 2006, 6361
  • [45] Airborne ground illuminator for hyperspectral validation and calibration
    Kalshoven, JE
    EARTH OBSERVING SYSTEM, 1996, 2820 : 67 - 71
  • [46] Flow meter Data Validation and Reconstruction using Neural Networks: Application to the Barcelona Water Network
    Rodriguez, Hector
    Puig, Vicenc
    Flores, Juan J.
    Lopez, Rodrigo
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1746 - 1751
  • [47] The calibration and validation of SeaWiFS data
    Hooker, SB
    McClain, CR
    PROGRESS IN OCEANOGRAPHY, 2000, 45 (3-4) : 427 - 465
  • [48] Evaluation of Stratified Validation in Neural Network Training with Imbalanced Data
    Takase, Tomoumi
    Oyama, Satoshi
    Kurihara, Masahito
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2019, : 379 - 382
  • [49] Neural Network based Data Validation Algorithm for Pressure Processes
    Mounika, Batthina
    Raghu, Guntupalli
    Sreelekha, Surabhi
    Jeyanthi, R.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1223 - 1227
  • [50] Calibration of a pole-mounted camera using a neural network
    Cambron, Mark E.
    Northrup, Steven G.
    Proceedings of the Thirty-Eighth Southeastern Symposium on System Theory, 2004, : 265 - 269