Validation of Neural Network software by using IXPE ground calibration data

被引:0
|
作者
Di Marco, Alessandro [1 ]
Tennant, Allyn F. [2 ]
La Monaca, Fabio [1 ]
Muleri, Fabio [1 ]
Rankin, John [1 ]
Rushing, John [3 ]
Soffitta, Paolo [1 ]
Baglioni, Giancarlo [4 ]
Baldini, Luca [5 ]
Costa, Enrico [1 ]
Dietz, Kurtis [2 ]
Fabiani, Sergio [1 ]
Latorre, Vittorio [1 ]
Locatelli, Ugo [4 ]
Manfreda, Alberto [5 ]
O'Dell, Stephen L. [2 ]
Peirson, Lawrence [6 ,7 ]
Weisskopf, Martin C. [2 ]
机构
[1] Ist Nazl Astrofis IAPS, Via Fosso Cavalliere 100, I-00133 Rome, Italy
[2] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[3] Univ Alabama, Informat Technol & Syst Ctr, Huntsville, AL 35899 USA
[4] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[6] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[7] Stanford Univ, Kavli Inst Particle Astrophys & Cosmo, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
IXPE; X-rays; polarimetry; Neural networks; Machine Learning; GPD; X-RAY POLARIMETER; POLARIZATION;
D O I
10.1117/12.2628976
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Imaging X-ray Polarimetry Explorer (IXPE), launched 2021 December 9, will enable meaningful x-ray polarimetry of several types of astronomical sources. Aiming to improve the polarimetric sensitivity of Gas Pixel Detectors, track-reconstruction algorithms based upon machine learning have been proposed in the literature. In particular, a neural-network approach recently developed at Stanford University seems very promising. Here, we describe results obtained using this neural-network approach to analyze IXPE ground calibration data; we then compare those results with results obtained using the current moments-based analysis approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Validation of a neural network based modis global cloud mask using ground-based instruments
    Berendes, T
    Berendes, D
    Welch, R
    Clothiaux, E
    Dutton, E
    Minnett, P
    Uttal, T
    18TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY, 2002, : 16 - 18
  • [32] A neural network approach to the interpretation of Ground Penetrating Radar data
    Costamagna, E
    Gamba, P
    Lossani, S
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 412 - 414
  • [33] Calibration, data diagnostic and data validation
    Mours, B
    Vitale, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (03): : 247 - 249
  • [34] NEURAL NETWORK SOFTWARE
    LAWRENCE, M
    CHEMICAL ENGINEERING, 1990, 97 (12) : 7 - 7
  • [35] Detection of rain no rain condition on ground from radar data using a Kohonen neural network
    Xiao, RR
    Chandrasekar, V
    Liu, H
    Gorgucci, E
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 159 - 161
  • [36] Enhanced routing using recurrent neural networks in software defined-data center network
    Modi, Tejas M.
    Swain, Pravati
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (05):
  • [37] SOFTWARE AND THE NEURAL NETWORK
    BEARD, N
    NEW SCIENTIST, 1990, 126 (1723) : 72 - 73
  • [38] Software generation of random numbers by using neural network
    Chan, CK
    Chan, CK
    Cheng, LM
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 209 - 211
  • [39] Software Defect Prediction using Convolutional Neural Network
    Wongpheng, Kittisak
    Visutsak, Porawat
    35TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2020), 2020, : 240 - 243
  • [40] Detection of Airplanes on the Ground Using YOLO Neural Network
    Kharchenko, Volodymyr
    Chyrka, Iurii
    2018 IEEE 17TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2018, : 294 - 297