Validation of Neural Network software by using IXPE ground calibration data

被引:0
|
作者
Di Marco, Alessandro [1 ]
Tennant, Allyn F. [2 ]
La Monaca, Fabio [1 ]
Muleri, Fabio [1 ]
Rankin, John [1 ]
Rushing, John [3 ]
Soffitta, Paolo [1 ]
Baglioni, Giancarlo [4 ]
Baldini, Luca [5 ]
Costa, Enrico [1 ]
Dietz, Kurtis [2 ]
Fabiani, Sergio [1 ]
Latorre, Vittorio [1 ]
Locatelli, Ugo [4 ]
Manfreda, Alberto [5 ]
O'Dell, Stephen L. [2 ]
Peirson, Lawrence [6 ,7 ]
Weisskopf, Martin C. [2 ]
机构
[1] Ist Nazl Astrofis IAPS, Via Fosso Cavalliere 100, I-00133 Rome, Italy
[2] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[3] Univ Alabama, Informat Technol & Syst Ctr, Huntsville, AL 35899 USA
[4] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[6] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[7] Stanford Univ, Kavli Inst Particle Astrophys & Cosmo, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
IXPE; X-rays; polarimetry; Neural networks; Machine Learning; GPD; X-RAY POLARIMETER; POLARIZATION;
D O I
10.1117/12.2628976
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Imaging X-ray Polarimetry Explorer (IXPE), launched 2021 December 9, will enable meaningful x-ray polarimetry of several types of astronomical sources. Aiming to improve the polarimetric sensitivity of Gas Pixel Detectors, track-reconstruction algorithms based upon machine learning have been proposed in the literature. In particular, a neural-network approach recently developed at Stanford University seems very promising. Here, we describe results obtained using this neural-network approach to analyze IXPE ground calibration data; we then compare those results with results obtained using the current moments-based analysis approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Artificial neural network for multivariate nonlinear calibration of fluorimetric data
    Liu, P
    Liang, YZ
    Wang, SG
    Song, XH
    Yu, RQ
    ACTA CHIMICA SINICA, 1997, 55 (04) : 386 - 392
  • [22] Calibration and Validation of PARAMICS for Freeway Using Toll Data
    Zhe, Li
    Hao, Liu
    Ke, Zhang
    2009 12TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2009), 2009, : 172 - 177
  • [23] Using the DJPheno Software for Model Calibration and Validation of Apple Phenological Stages
    Bourgeois, G.
    Plouffe, D.
    Beaudry, N.
    Choquette, D.
    Chouinard, G.
    Bellerose, S.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 117 - 123
  • [24] Materials data validation and imputation with an artificial neural network
    Verpoort, P. C.
    MacDonald, P.
    Conduit, G. J.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 147 : 176 - 185
  • [25] Sensor calibration and compensation using artificial neural network
    Khan, SA
    Shahani, DT
    Agarwala, AK
    ISA TRANSACTIONS, 2003, 42 (03) : 337 - 352
  • [26] REDUCING INSTRUMENT POWER USING NEURAL NETWORK CALIBRATION
    Bradburn, John
    Aksoy, Mustafa
    Racette, Paul E.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4392 - 4394
  • [27] Calibration of Magnetometer for Small Satellites Using Neural Network
    Kliment, T.
    Praslicka, D.
    Lipovsky, P.
    Draganova, K.
    Zavodsky, O.
    ACTA PHYSICA POLONICA A, 2017, 131 (04) : 1129 - 1131
  • [28] Implicit camera calibration using an artificial neural network
    Woo, Dong-Min
    Park, Dong-Chul
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 641 - 650
  • [29] Estimation Matrix Calibration of PMU Data-driven State Estimation Using Neural Network
    Tian, Guanyu
    Gu, Yingzhong
    Lu, Xiao
    Shi, Di
    Zhou, Qun
    Wang, Zhiwei
    Li, Jie
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [30] Validation of human activity recognition using a convolutional neural network on accelerometer and gyroscope data
    Hysenllari, Eni
    Ottenbacher, Joerg
    McLennan, Darren
    GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH, 2022, 52 (02) : 248 - 252