Validation of Neural Network software by using IXPE ground calibration data

被引:0
|
作者
Di Marco, Alessandro [1 ]
Tennant, Allyn F. [2 ]
La Monaca, Fabio [1 ]
Muleri, Fabio [1 ]
Rankin, John [1 ]
Rushing, John [3 ]
Soffitta, Paolo [1 ]
Baglioni, Giancarlo [4 ]
Baldini, Luca [5 ]
Costa, Enrico [1 ]
Dietz, Kurtis [2 ]
Fabiani, Sergio [1 ]
Latorre, Vittorio [1 ]
Locatelli, Ugo [4 ]
Manfreda, Alberto [5 ]
O'Dell, Stephen L. [2 ]
Peirson, Lawrence [6 ,7 ]
Weisskopf, Martin C. [2 ]
机构
[1] Ist Nazl Astrofis IAPS, Via Fosso Cavalliere 100, I-00133 Rome, Italy
[2] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[3] Univ Alabama, Informat Technol & Syst Ctr, Huntsville, AL 35899 USA
[4] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[6] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[7] Stanford Univ, Kavli Inst Particle Astrophys & Cosmo, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
IXPE; X-rays; polarimetry; Neural networks; Machine Learning; GPD; X-RAY POLARIMETER; POLARIZATION;
D O I
10.1117/12.2628976
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Imaging X-ray Polarimetry Explorer (IXPE), launched 2021 December 9, will enable meaningful x-ray polarimetry of several types of astronomical sources. Aiming to improve the polarimetric sensitivity of Gas Pixel Detectors, track-reconstruction algorithms based upon machine learning have been proposed in the literature. In particular, a neural-network approach recently developed at Stanford University seems very promising. Here, we describe results obtained using this neural-network approach to analyze IXPE ground calibration data; we then compare those results with results obtained using the current moments-based analysis approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] VALIDATION AND RECOVERY OF VIBRATION DATA IN ELECTROMACHINE SYSTEMS USING NEURAL-NETWORK SOFTWARE
    KARAM, M
    GHASSEMZADEH, M
    DAI, ND
    GANDIKOTA, M
    TRZYNADLOWSKI, AM
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1994, 30 (06) : 1588 - 1599
  • [2] Safety critical software and validation of neural network software
    Moran, GTP
    NEURAL NETWORKS - PRODUCING DEPENDABLE SYSTEMS, CONFERENCE PROCEEDINGS, 1996, 95 (973): : 55 - 65
  • [3] Validation of GLAS calibration using ground- and satellite-based data
    Thome, K
    Reagan, J
    Geis, J
    Bolt, M
    Spinhirne, J
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2468 - 2471
  • [4] Validation of Text Data Preprocessing Using a Neural Network Model
    Woo, HoSung
    Kim, JaMee
    Lee, WonGyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [5] Calibration and data validation of wireless sensor network
    Zhang Jialin
    Liu Qiang
    Li Xiuhong
    Niu Hailin
    Cai Erli
    Chang Chongyan
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [6] Upward continuation of ground data for GOCE calibration/validation purposes
    Wolf, KI
    Denker, H
    GRAVITY, GEOID AND SPACE MISSIONS, 2005, 129 : 60 - 65
  • [7] Effort estimation in agile software development using experimental validation of neural network models
    Bilgaiyan S.
    Mishra S.
    Das M.
    International Journal of Information Technology, 2019, 11 (3) : 569 - 573
  • [8] Intelligent routing using convolutional neural network in software-defined data center network
    Modi, Tejas M.
    Swain, Pravati
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (11): : 13373 - 13392
  • [9] Intelligent routing using convolutional neural network in software-defined data center network
    Tejas M. Modi
    Pravati Swain
    The Journal of Supercomputing, 2022, 78 : 13373 - 13392
  • [10] Optimisation of a neural network model for calibration of voltammetric data
    Richards, E
    Bessant, C
    Saini, S
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 61 (1-2) : 35 - 49