On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect

被引:3
|
作者
Laborde, Maxime [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2020年 / 81卷 / 03期
关键词
Wasserstein gradient flows; Jordan-Kinderlehrer-Otto scheme; Crowd motion; Nonlinear cross-diffusion systems; EQUATIONS; UNIQUENESS; EVOLUTION; MODEL; CONVEXITY; EXISTENCE; PRINCIPLE; DYNAMICS;
D O I
10.1007/s00245-018-9527-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of solution for systems of Fokker-Planck equations coupled through a common nonlinear congestion. Two different kinds of congestion are considered: a porous media congestion or soft congestion and the hard congestion given by the constraint rho 1+rho 2 <= 1. We show that these systems can be seen as gradient flows in a Wasserstein product space and then we obtain a constructive method to prove the existence of solutions. Therefore it is natural to apply it for numerical purposes and some numerical simulations are included.
引用
收藏
页码:989 / 1020
页数:32
相关论文
共 50 条
  • [31] Nonlinear degenerate cross-diffusion systems with nonlocal interaction
    Di Francesco, M.
    Esposito, A.
    Fagioli, S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 : 94 - 117
  • [32] On nonlinear cross-diffusion systems: an optimal transport approach
    Kim, Inwon
    Meszaros, Alpar Richard
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
  • [33] Reduced order modelling of nonlinear cross-diffusion systems
    Karasozen, Bulent
    Mulayim, Gulden
    Uzunca, Murat
    Yildiz, Suleyman
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
  • [34] ON LIMIT SYSTEMS FOR SOME POPULATION MODELS WITH CROSS-DIFFUSION
    Kuto, Kousuke
    Yamada, Yoshio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (08): : 2745 - 2769
  • [35] A LINEAR SCHEME TO APPROXIMATE NONLINEAR CROSS-DIFFUSION SYSTEMS
    Murakawa, Hideki
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (06): : 1141 - 1161
  • [36] Global solvability of a class of reaction-diffusion systems with cross-diffusion
    Wang, Zhi-An
    Wu, Leyun
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [37] CROSS-DIFFUSION INDUCED INSTABILITY AND STABILITY IN REACTION-DIFFUSION SYSTEMS
    Shi, Junping
    Xie, Zhifu
    Little, Kristina
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2011, 1 (01): : 95 - 119
  • [38] Analysis of a fractional cross-diffusion system for multi-species populations
    Juengel, Ansgar
    Zamponi, Nicola
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 237 - 267
  • [39] On triangular reaction cross-diffusion systems with possible self-diffusion
    Trescases, A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (07): : 796 - 829
  • [40] A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations
    Juengel, Ansgar
    Portisch, Stefan
    Zurek, Antoine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 759 - 792