On Cross-Diffusion Systems for Two Populations Subject to a Common Congestion Effect

被引:3
|
作者
Laborde, Maxime [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2020年 / 81卷 / 03期
关键词
Wasserstein gradient flows; Jordan-Kinderlehrer-Otto scheme; Crowd motion; Nonlinear cross-diffusion systems; EQUATIONS; UNIQUENESS; EVOLUTION; MODEL; CONVEXITY; EXISTENCE; PRINCIPLE; DYNAMICS;
D O I
10.1007/s00245-018-9527-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of solution for systems of Fokker-Planck equations coupled through a common nonlinear congestion. Two different kinds of congestion are considered: a porous media congestion or soft congestion and the hard congestion given by the constraint rho 1+rho 2 <= 1. We show that these systems can be seen as gradient flows in a Wasserstein product space and then we obtain a constructive method to prove the existence of solutions. Therefore it is natural to apply it for numerical purposes and some numerical simulations are included.
引用
收藏
页码:989 / 1020
页数:32
相关论文
共 50 条
  • [21] On the Cross-diffusion and Soret Effect in Multicomponent Mixtures
    Ilya I. Ryzhkov
    Valentina M. Shevtsova
    Microgravity Science and Technology, 2009, 21 : 37 - 40
  • [22] Cross-diffusion in the two-variable Oregonator model
    Berenstein, Igal
    Beta, Carsten
    CHAOS, 2013, 23 (03)
  • [23] SPLITTING SCHEMES AND SEGREGATION IN REACTION CROSS-DIFFUSION SYSTEMS
    Carrillo, J. A.
    Fagioli, S.
    Santambrogio, F.
    Schmidtchen, M.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5695 - 5718
  • [24] ZOOLOGY OF A NONLOCAL CROSS-DIFFUSION MODEL FOR TWO SPECIES
    Carrillo, Jose A.
    Huang, Yanghong
    Schmidtchen, Markus
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1078 - 1104
  • [25] Nonintrusive model order reduction for cross-diffusion systems
    Karasozen, Bulent
    Mulayim, Gulden
    Uzunca, Murat
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
  • [26] On nonlinear cross-diffusion systems: an optimal transport approach
    Inwon Kim
    Alpár Richárd Mészáros
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [27] MARTINGALE SOLUTIONS OF STOCHASTIC NONLOCAL CROSS-DIFFUSION SYSTEMS
    Bendahmane, Mostafa
    Karlsen, Kenneth H.
    NETWORKS AND HETEROGENEOUS MEDIA, 2022, 17 (05) : 719 - 752
  • [28] The boundedness-by-entropy method for cross-diffusion systems
    Juengel, Ansgar
    NONLINEARITY, 2015, 28 (06) : 1963 - 2001
  • [29] Uniform boundedness and convergence of solutions to cross-diffusion systems
    Shim, SA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) : 281 - 305
  • [30] Cross-diffusion systems and fast-reaction limits
    Daus, Esther S.
    Desvillettes, Laurent
    Juengel, Ansgar
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 159