Deformations of W algebras via quantum toroidal algebras

被引:0
|
作者
Feigin, B. [1 ,2 ]
Jimbo, M. [3 ]
Mukhin, E. [4 ]
Vilkoviskiy, I [1 ,5 ]
机构
[1] Natl Res Univ Higher Sch Econ, Myasnitskaya Ul 20, Moscow 101000, Russia
[2] Landau Inst Theoret Phys, Pr Akad Semenova 1a, Chernogolovka 142432, Russia
[3] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[4] Indiana Univ Purdue Univ, Dept Math, 402 N Blackford St,LD 270, Indianapolis, IN 46202 USA
[5] Skolkovo Inst Sci & Technol, Ctr Adv Studies, 1 Nobel St, Moscow 143026, Russia
来源
SELECTA MATHEMATICA-NEW SERIES | 2021年 / 27卷 / 04期
基金
俄罗斯科学基金会;
关键词
Quantum toroidal algebra; W Algebra; Integrals of motion; qq Character; CONFORMAL FIELD-THEORY; INTEGRABLE STRUCTURE; BETHE-ANSATZ; Q-OPERATORS;
D O I
10.1007/s00029-021-00663-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the uniform description of deformed W algebras of type A including the supersymmetric case in terms of the quantum toroidal gl(1) algebra E. In particular, we recover the deformed affine Cartan matrices and the deformed integrals of motion. We introduce a comodule algebra K over E which gives a uniform construction of basic deformed W currents and screening operators in types B, C, D including twisted and supersymmetric cases. We show that a completion of algebra K contains three commutative subalgebras. In particular, it allows us to obtain a commutative family of integrals of motion associated with affine Dynkin diagrams of all non-exceptional types except D-l+1((2)). We also obtain in a uniform way deformed finite and affine Cartan matrices in all classical types together with a number of new examples, and discuss the corresponding screening operators.
引用
收藏
页数:62
相关论文
共 50 条
  • [31] THE RELATION BETWEEN QUANTUM W-ALGEBRAS AND LIE-ALGEBRAS
    DEBOER, J
    TJIN, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) : 317 - 332
  • [32] Acyclic quantum cluster algebras via Hall algebras of morphisms
    Ming Ding
    Fan Xu
    Haicheng Zhang
    Mathematische Zeitschrift, 2020, 296 : 945 - 968
  • [33] Acyclic quantum cluster algebras via Hall algebras of morphisms
    Ding, Ming
    Xu, Fan
    Zhang, Haicheng
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 945 - 968
  • [34] On the toroidal Leibniz algebras
    Liu, Dong
    Lin, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 227 - 240
  • [35] Deformations of Algebras Constructed using Quantum Stochastic Calculus
    R. L. Hudson
    K. R. Parthasarathy
    Letters in Mathematical Physics, 1999, 50 : 115 - 133
  • [36] DEFORMATIONS OF OPERATOR ALGEBRAS AND THE CONSTRUCTION OF QUANTUM FIELD THEORIES
    Lechner, Gandalf
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 490 - 495
  • [37] Representations of classical lie algebras from their quantum deformations
    Moylan, P
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 683 - 686
  • [38] On the Toroidal Leibniz Algebras
    Dong LIU Department of Mathematics
    Acta Mathematica Sinica,English Series, 2008, 24 (02) : 227 - 240
  • [39] On the toroidal Leibniz algebras
    Dong Liu
    Lei Lin
    Acta Mathematica Sinica, English Series, 2008, 24 : 227 - 240
  • [40] Number operator algebras and deformations of ε-Poisson algebras
    Besnard, F
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 55 (02) : 113 - 125