On the Toroidal Leibniz Algebras

被引:0
|
作者
Dong LIU Department of Mathematics
机构
关键词
Toroidal Leibniz algebra; derivation and automorphism; universal central extension;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebrasC[t),...t]in the category of Leibniz algebras.In this paper,some properties and representationsof toroidal Leibniz algebras are studied.Some general theories of central extensions of Leibniz algebrasare also obtained.
引用
收藏
页码:227 / 240
页数:14
相关论文
共 50 条
  • [1] On the toroidal Leibniz algebras
    Liu, Dong
    Lin, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 227 - 240
  • [2] On the toroidal Leibniz algebras
    Dong Liu
    Lei Lin
    Acta Mathematica Sinica, English Series, 2008, 24 : 227 - 240
  • [3] On Leibniz algebras
    Ayupov, SA
    Omirov, BA
    ALGEBRA AND OPERATOR THEORY, 1998, : 1 - 12
  • [4] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [5] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [6] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    Algebras and Representation Theory, 2018, 21 : 627 - 633
  • [7] Representations of Leibniz Algebras
    A. Fialowski
    É. Zs. Mihálka
    Algebras and Representation Theory, 2015, 18 : 477 - 490
  • [8] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138
  • [9] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [10] Leibniz algebras with derivations
    Apurba Das
    Journal of Homotopy and Related Structures, 2021, 16 : 245 - 274