Deformations of W algebras via quantum toroidal algebras

被引:0
|
作者
Feigin, B. [1 ,2 ]
Jimbo, M. [3 ]
Mukhin, E. [4 ]
Vilkoviskiy, I [1 ,5 ]
机构
[1] Natl Res Univ Higher Sch Econ, Myasnitskaya Ul 20, Moscow 101000, Russia
[2] Landau Inst Theoret Phys, Pr Akad Semenova 1a, Chernogolovka 142432, Russia
[3] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[4] Indiana Univ Purdue Univ, Dept Math, 402 N Blackford St,LD 270, Indianapolis, IN 46202 USA
[5] Skolkovo Inst Sci & Technol, Ctr Adv Studies, 1 Nobel St, Moscow 143026, Russia
来源
SELECTA MATHEMATICA-NEW SERIES | 2021年 / 27卷 / 04期
基金
俄罗斯科学基金会;
关键词
Quantum toroidal algebra; W Algebra; Integrals of motion; qq Character; CONFORMAL FIELD-THEORY; INTEGRABLE STRUCTURE; BETHE-ANSATZ; Q-OPERATORS;
D O I
10.1007/s00029-021-00663-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the uniform description of deformed W algebras of type A including the supersymmetric case in terms of the quantum toroidal gl(1) algebra E. In particular, we recover the deformed affine Cartan matrices and the deformed integrals of motion. We introduce a comodule algebra K over E which gives a uniform construction of basic deformed W currents and screening operators in types B, C, D including twisted and supersymmetric cases. We show that a completion of algebra K contains three commutative subalgebras. In particular, it allows us to obtain a commutative family of integrals of motion associated with affine Dynkin diagrams of all non-exceptional types except D-l+1((2)). We also obtain in a uniform way deformed finite and affine Cartan matrices in all classical types together with a number of new examples, and discuss the corresponding screening operators.
引用
收藏
页数:62
相关论文
共 50 条
  • [41] Quantum group actions, twisting elements, and deformations of algebras
    Benkart, Georgia
    Witherspoon, Sarah
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (01) : 371 - 389
  • [42] Deformations of algebras constructed using quantum stochastic calculus
    Hudson, RL
    Parthasarathy, KR
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 50 (02) : 115 - 133
  • [43] Number Operator Algebras and Deformations of ε-Poisson Algebras
    Fabien Besnard
    Letters in Mathematical Physics, 2001, 55 : 113 - 125
  • [44] Cohomology and deformations of dendriform algebras, and Dend∞-algebras
    Das, Apurba
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1544 - 1567
  • [45] PBW deformations of quantum symmetric algebras and their group extensions
    Shroff, Piyush
    Witherspoon, Sarah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (03)
  • [46] Quantum Deformations of Algebras Associated with Integrable Hamiltonian Systems
    Kasperczuk, Stanislaw P.
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 69 - +
  • [47] Integrable deformations of oscillator chains from quantum algebras
    Ballesteros, A
    Herranz, FJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (50): : 8851 - 8862
  • [48] W algebras are L∞ algebras
    Blumenhagen, Ralph
    Fuchs, Michael
    Traube, Matthias
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [49] Higher-rank isomonodromic deformations and W-algebras
    Gavrylenko, Pavlo
    Iorgov, Nikolai
    Lisovyy, Oleg
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (02) : 327 - 364
  • [50] Higher-rank isomonodromic deformations and W-algebras
    Pavlo Gavrylenko
    Nikolai Iorgov
    Oleg Lisovyy
    Letters in Mathematical Physics, 2020, 110 : 327 - 364