Nonparametric estimation of large covariance matrices of longitudinal data

被引:175
|
作者
Wu, WB [1 ]
Pourahmadi, M
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
关键词
cholesky decomposition; covariance estimation; local polynomial regression; longitudinal study; order selection; varying-coefficient regression;
D O I
10.1093/biomet/90.4.831
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Estimation of an unstructured covariance matrix is difficult because of its positive-definiteness constraint. This obstacle is removed by regressing each variable on its predecessors, so that estimation of a covariance matrix is shown to be equivalent to that of estimating a sequence of varying-coefficient and varying-order regression models. Our framework is similar to the use of increasing-order autoregressive models in approximating the covariance matrix or the spectrum of a stationary time series. As an illustration, we adopt Fan & Zhang's (2000) two-step estimation of functional linear models and propose nonparametric estimators of covariance matrices which are guaranteed to be positive definite. For parsimony a suitable order for the sequence of (auto) regression models is found using penalised likelihood criteria like AIC and BIC. Some asymptotic results for the local polynomial estimators of components of a covariance matrix are established. Two longitudinal datasets are analysed to illustrate the methodology. A simulation study reveals the advantage of the nonparametric covariance estimator over the sample covariance matrix for large covariance matrices.
引用
收藏
页码:831 / 844
页数:14
相关论文
共 50 条
  • [31] ESTIMATION OF LARGE TOEPLITZ COVARIANCE MATRICES AND APPLICATION TO SOURCE DETECTION
    Vinogradova, Julia
    Couillet, Romain
    Hachem, Walid
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 2120 - 2124
  • [32] Analysis of longitudinal data with semiparametric estimation of covariance function
    Fan, Jianqing
    Huang, Tao
    Li, Runze
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) : 632 - 641
  • [33] GMM estimation of the covariance structure of longitudinal data on earnings
    Doris, Aedin
    O'Neill, Donal
    Sweetman, Olive
    STATA JOURNAL, 2011, 11 (03): : 439 - 459
  • [34] Robust estimation of mean and covariance for longitudinal data with dropouts
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1240 - 1254
  • [35] Nonparametric operator-regularized covariance function estimation for functional data
    Wong, Raymond K. W.
    Zhang, Xiaoke
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 131 - 144
  • [36] Covariance Partition Priors: A Bayesian Approach to Simultaneous Covariance Estimation for Longitudinal Data
    Gaskins, J. T.
    Daniels, M. J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (01) : 167 - 186
  • [37] Nonparametric covariance estimation in multivariate distributions
    Detlef Plachky
    Andrew L. Rukhin
    Metrika, 1999, 50 : 131 - 136
  • [38] Bayesian Estimation of Correlation Matrices of Longitudinal Data
    Ghosh, Riddhi Pratim
    Mallick, Bani
    Pourahmadi, Mohsen
    BAYESIAN ANALYSIS, 2021, 16 (03): : 1039 - 1058
  • [39] ON THE NONPARAMETRIC-ESTIMATION OF COVARIANCE FUNCTIONS
    HALL, P
    FISHER, NI
    HOFFMANN, B
    ANNALS OF STATISTICS, 1994, 22 (04): : 2115 - 2134
  • [40] A nonparametric prior for simultaneous covariance estimation
    Gaskins, Jeremy T.
    Daniels, Michael J.
    BIOMETRIKA, 2013, 100 (01) : 125 - 138