Nonparametric estimation of large covariance matrices of longitudinal data

被引:175
|
作者
Wu, WB [1 ]
Pourahmadi, M
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
关键词
cholesky decomposition; covariance estimation; local polynomial regression; longitudinal study; order selection; varying-coefficient regression;
D O I
10.1093/biomet/90.4.831
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Estimation of an unstructured covariance matrix is difficult because of its positive-definiteness constraint. This obstacle is removed by regressing each variable on its predecessors, so that estimation of a covariance matrix is shown to be equivalent to that of estimating a sequence of varying-coefficient and varying-order regression models. Our framework is similar to the use of increasing-order autoregressive models in approximating the covariance matrix or the spectrum of a stationary time series. As an illustration, we adopt Fan & Zhang's (2000) two-step estimation of functional linear models and propose nonparametric estimators of covariance matrices which are guaranteed to be positive definite. For parsimony a suitable order for the sequence of (auto) regression models is found using penalised likelihood criteria like AIC and BIC. Some asymptotic results for the local polynomial estimators of components of a covariance matrix are established. Two longitudinal datasets are analysed to illustrate the methodology. A simulation study reveals the advantage of the nonparametric covariance estimator over the sample covariance matrix for large covariance matrices.
引用
收藏
页码:831 / 844
页数:14
相关论文
共 50 条
  • [41] Nonparametric covariance estimation in multivariate distributions
    Plachky, D
    Rukhin, AL
    METRIKA, 1999, 50 (02) : 131 - 136
  • [42] Nonparametric estimation of isotropic covariance function
    Wang, Yiming
    Ghosh, Sujit K.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (01) : 198 - 237
  • [43] Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices
    Brault, Vincent
    Ouadah, Sarah
    Sansonnet, Laure
    Levy-Leduc, Celine
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 165 : 143 - 165
  • [44] NONPARAMETRIC COVARIANCE ESTIMATION FOR MIXED LONGITUDINAL STUDIES, WITH APPLICATIONS IN MIDLIFE WOMEN'S HEALTH
    Zhang, Anru R.
    Chen, Kehui
    STATISTICA SINICA, 2022, 32 (01) : 345 - 365
  • [45] Large dynamic covariance matrices: Enhancements based on intraday data
    De Nard, Gianluca
    Engle, Robert F.
    Ledoit, Olivier
    Wolf, Michael
    JOURNAL OF BANKING & FINANCE, 2022, 138
  • [46] Homogeneity tests of covariance matrices with high-dimensional longitudinal data
    Zhong, Ping-Shou
    Li, Runze
    Santo, Shawn
    BIOMETRIKA, 2019, 106 (03) : 619 - 634
  • [47] ROBUST ESTIMATION OF COVARIANCE MATRICES
    REYNOLDS, RG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (09) : 1047 - 1051
  • [48] On the estimation of structured covariance matrices
    Zorzi, Mattia
    Ferrante, Augusto
    AUTOMATICA, 2012, 48 (09) : 2145 - 2151
  • [49] Partial estimation of covariance matrices
    Elizaveta Levina
    Roman Vershynin
    Probability Theory and Related Fields, 2012, 153 : 405 - 419
  • [50] ESTIMATION OF HYPERSPECTRAL COVARIANCE MATRICES
    Ben-David, Avishai
    Davidson, Charles E.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4324 - 4327