A nonparametric prior for simultaneous covariance estimation

被引:13
|
作者
Gaskins, Jeremy T. [1 ]
Daniels, Michael J. [2 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Univ Texas Austin, Div Stat & Sci Computat, Sect Integrat Biol, Austin, TX 78712 USA
基金
美国国家卫生研究院;
关键词
Bayesian nonparametric inference; Cholesky decomposition; Matrix stick-breaking process; Simultaneous covariance estimation; Sparsity; LINEAR MIXED MODELS; LONGITUDINAL DATA; MATRICES; ORTHOGONALITY; SELECTION;
D O I
10.1093/biomet/ass060
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the modelling of longitudinal data from several groups, appropriate handling of the dependence structure is of central importance. Standard methods include specifying a single covariance matrix for all groups or independently estimating the covariance matrix for each group without regard to the others, but when these model assumptions are incorrect, these techniques can lead to biased mean effects or loss of efficiency, respectively. Thus, it is desirable to develop methods for simultaneously estimating the covariance matrix for each group that will borrow strength across groups in a way that is ultimately informed by the data. In addition, for several groups with covariance matrices of even medium dimension, it is difficult to manually select a single best parametric model among the huge number of possibilities given by incorporating structural zeros and/or commonality of individual parameters across groups. In this paper we develop a family of nonparametric priors using the matrix stick-breaking process of Dunson et al. (2008) that seeks to accomplish this task by parameterizing the covariance matrices in terms of their modified Cholesky decompositions (Pourahmadi, 1999). We establish some theoretical properties of these priors, examine their effectiveness via a simulation study, and illustrate the priors using data from a longitudinal clinical trial.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 50 条
  • [1] Nonparametric covariance estimation in multivariate distributions
    Detlef Plachky
    Andrew L. Rukhin
    [J]. Metrika, 1999, 50 : 131 - 136
  • [2] ON THE NONPARAMETRIC-ESTIMATION OF COVARIANCE FUNCTIONS
    HALL, P
    FISHER, NI
    HOFFMANN, B
    [J]. ANNALS OF STATISTICS, 1994, 22 (04): : 2115 - 2134
  • [3] Nonparametric covariance estimation in multivariate distributions
    Plachky, D
    Rukhin, AL
    [J]. METRIKA, 1999, 50 (02) : 131 - 136
  • [4] Nonparametric estimation of isotropic covariance function
    Wang, Yiming
    Ghosh, Sujit K.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (01) : 198 - 237
  • [5] Nonparametric spatial covariance functions: Estimation and testing
    Bjornstad, ON
    Falck, W
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2001, 8 (01) : 53 - 70
  • [6] Nonparametric estimation of covariance structure in longitudinal data
    Diggle, PJ
    Verbyla, AP
    [J]. BIOMETRICS, 1998, 54 (02) : 401 - 415
  • [7] Nonparametric estimation of covariance functions by model selection
    Bigot, Jeremie
    Biscay, Rolando
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 822 - 855
  • [8] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    [J]. BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [9] Nonparametric spatial covariance functions: Estimation and testing
    Ottar N. BjØrnstad
    Wilhelm Falck
    [J]. Environmental and Ecological Statistics, 2001, 8 : 53 - 70
  • [10] Nonparametric covariance estimation with shrinkage toward stationary models
    Blake, Tayler A.
    Lee, Yoonkyung
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (06):