On the k-generalized fibonacci numbers and high-order linear recurrence relations

被引:11
|
作者
Yang, Sheng-liang [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
关键词
k-generalized Fibonacci sequence; order-k linear homogeneous recurrence relation; elementary symmetric function; complete homogeneous symmetric function; determinant; companion matrix;
D O I
10.1016/j.amc.2007.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using elementary symmetric function and complete homogeneous symmetric function, we obtain a determinant formula for the k-generalized Fibonacci sequence. The relationship between the k-generalized Fibonacci sequence and the order-k linear homogeneous recurrence relation has been investigated, and a general solution for the latter is also derived. Furthermore, we obtain an explicit expression for the elements in the nth power of the companion matrix in terms of k-generalized Fibonacci numbers. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:850 / 857
页数:8
相关论文
共 50 条
  • [1] Generalized Heisenberg algebras and k-generalized Fibonacci numbers
    Schork, Matthias
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : 4207 - 4214
  • [2] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [3] On the sum of the reciprocals of k-generalized Fibonacci numbers
    Alahmadi, Adel
    Luca, Florian
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 31 - 42
  • [4] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    [J]. UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [5] The Binet formula for the k-generalized Fibonacci numbers
    Yang, Sheng-liang
    Zhang, Hui-ting
    [J]. ARS COMBINATORIA, 2014, 116 : 193 - 204
  • [6] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [7] A Simplified Binet Formula for k-Generalized Fibonacci Numbers
    Dresden, Gregory P. B.
    Du, Zhaohui
    [J]. JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)
  • [8] The Binet formula and representations of k-generalized Fibonacci numbers
    Lee, GY
    Lee, SG
    Kim, JS
    Shin, HK
    [J]. FIBONACCI QUARTERLY, 2001, 39 (02): : 158 - 164
  • [9] DIOPHANTINE QUADRUPLES WITH VALUES IN k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    [J]. MATHEMATICA SLOVACA, 2018, 68 (04) : 939 - 949
  • [10] ON k-GENERALIZED FIBONACCI NUMBERS WITH ONLY ONE DISTINCT DIGIT
    Marques, Diego
    [J]. UTILITAS MATHEMATICA, 2015, 98 : 23 - 31